

Synthesis and Structural Studies of NCN Diimine Palladium Pincer Complexes Bearing *m*-Terphenyl Scaffolds

Liqing Ma,[†] Philip M. Imbesi,[†] James B. Updegraff III,[†] Allen D. Hunter,[‡] and John D. Protasiewicz^{*,†}

Department of Chemistry, Case Western Reserve University, 10900 Euclid Avenue, Cleveland, Ohio 44106, and Department of Chemistry, Youngstown State University, One University Plaza, Youngstown, Ohio 44555

Received December 27, 2006

The reaction of 2,6-[2-{RN=C(H)}C₆H₄]₂C₆H₃I [R = Ph (4), Cy (5), 2,6-Me₂C₆H₃ (6), 2,4,6-Me₃C₆H₂ (7), (*S*)- α -methylbenzyl (8)] with Pd₂(dba)₃ afforded the NCN diimine pincer palladium complexes [2,6-[2-{RN=C(H)}C₆H₄]₂C₆H₃-PdI] (9–13) by oxidative addition of the C–I bonds of the ligand precursors. Single-crystal X-ray diffraction analyses of complexes 9–13 reveal formal *C*₂-symmetric environments. Variable-temperature NMR studies of complexes 11 and 12 show hindered rotation about the N–Ar bonds and also suggest that atropisomers of complexes 9–13 do not interconvert on the NMR time scale. Consistent with this proposal, isolation of the two possible isomers of 13 (13a and 13b) was possible, and their structures and NMR properties have been examined in detail.

Introduction

Transition-metal complexes containing pincer-type ligands have attracted broad interest¹ for a spectrum of applications since the first report of these materials.² Pincer complexes have shown excellent applications in many catalytic reactions, such as Heck reactions,³ transfer hydrogenation,⁴ and catalytic dehydrogenation of alkanes.⁵ Among the many types

of pincer complexes, those containing PCP, NCN, and SCS donor sets are the most investigated. Common to many of these pincer ligands is an anchoring ring housing the central donor atom and upon which the two outer donor sets are tethered. In particular, the *m*-xylyl framework ([2,6-(DCH₂)₂C₆H₃]⁻, where D = donor atoms or groups such as NR₂, PR₂, SR, etc.; Chart 1) has proven to be both popular and profitable for a variety of interesting applications. Related

10.1021/ic062476a CCC: \$37.00 © 2007 American Chemical Society Published on Web 06/01/2007

^{*} To whom correspondence should be addressed. E-mail: protasiewicz@ case.edu.

[†] Case Western Reserve University.

[‡] Youngstown State University.

 ⁽a) Slagt, M. Q.; van Zwieten, D. A. P.; Moerkerk, A.; Gebbink, R. J. M. K.; van Koten, G. Coord. Chem. Rev. 2004, 248, 2275. (b) Crabtree, R. H. Pure Appl. Chem. 2003, 75, 435. (c) van der Boom, M. E.; Milstein, D. Chem. Rev. 2003, 103, 1759. (d) Albrecht, M.; van Koten, G. Angew. Chem., Int. Ed. 2001, 40, 3750. (e) Rietveld, M. H. P.; Grove, D. M.; van Koten, G. New J. Chem. 1997, 21, 751.
 (2) Moulton, C. J.; Shaw, B. L. J. Chem. Soc., Dalton Trans. 1976, 1020.

 ⁽a) Ohff, M.; Ohff, A.; van der Boom, M. E.; Milstein, D. J. Am. Chem. Soc. 1997, 119, 11687. (b) Bergbreiter, D. E.; Osburn, P. L.; Liu, Y. S. J. Am. Chem. Soc. 1999, 121, 9531. (c) Peris, E.; Loch, J. A.; Mata, J.; Crabtree, R. H. Chem. Commun. 2001, 201. (d) Eberhard, M. R. Org. Lett. 2004, 6, 2125. (e) Yoon, M. S.; Ryu, D.; Kim, J.; Ahn, K. H. Organometallics 2006, 25, 2409.

⁽⁴⁾ Dani, P.; Karlen, T.; Gossage, R. A.; Gladiali, S.; van Koten, G. Angew. Chem., Int. Ed. 2000, 39, 743.

^{(5) (}a) Jensen, C. M. Chem. Commun. 1999, 2443. (b) Morales-Morales, D.; Redón, R.; Yung, C.; Jensen, C. M. Chem. Commun. 2000, 1619.
(c) Krogh-Jespersen, K.; Czerw, M.; Summa, N.; Renkema, K. B.; Achord, P. D.; Goldman, A. S. J. Am. Chem. Soc. 2002, 124, 11404.
(d) Göttker-Schnetmann, I.; White, P.; Brookhart, M. J. Am. Chem. Soc. 2004, 126, 1804. (e) Zhu, K. M.; Achord, P. D.; Zhang, X. W.; Krogh-Jespersen, K.; Goldman, A. S. J. Am. Chem. Soc. 2004, 126, 13044. (f) Goldman, A. S.; Roy, A. H.; Huang, Z.; Ahuja, R.; Schinski, W.; Brookhart, M. Science 2006, 312, 257.

⁵²²⁰ Inorganic Chemistry, Vol. 46, No. 13, 2007

Chart 3

Scheme 1

ligands have also featured rings such as pyridine and N-heterocyclic carbenes (Chart 1) as platforms for tridentate ligands.

The rigidity and flexibility of these ligands have become a matter of interest because ring conformations might have a significant impact on the reactivity of the complexes. Particular attention has been centered on the rigidity of the two metallocyclic ring conformations and the orientation of the donor atoms relative to the anchoring central ring. In these systems, one can characterize the overall shape by noting the orientation of two key planes. The first is the coordination plane involving the metal and the three donor atoms of the pincer ligand (b in Chart 2). The second plane includes the anchoring ring and the metal atom (a in Chart 2). The deviation from coplanarity of the two planes can be defined by a "twist angle" Φ (Chart 2). Nonzero values for Scheme 3

 Φ dictate that there will be two possible C_2 -symmetric atropisomers that are possibly interconvertible by two mutual ring inversions.

For many of the pincer complexes utilizing the *m*-xylyl framework ([2,6-(DCH₂)₂C₆H₃]), small twist angles are observed and/or rapid interconversion between atropisomers is facile. The rates of interconversion, however, are sensitive to the nature of the (a) anchoring ring, (b) tethers, and (c) donor atoms and groups. For example, pincer-type complexes having various anchoring rings and/or tether sizes, such as A, ^{6}B , 7 and C^{8} (Chart 3), have been reported. Although complex A displayed a relatively large twist angle of 49°, facile interconversion between its two possible atropisomers, however, yielded an effective planar geometry, even at very low temperature.⁶ The interconversion of atropisomers of complex **B** was observed by ¹H NMR spectroscopy when the complex was heated to 77 °C. Complex C, having been modified at the methylene positions with relatively large alkyl groups, is conformationally rigid to an impressive temperature of 150 °C.8 Another interesting type of nonplanar binding mode, **D**, has been reported as well.⁹

The study of the structural rigidity of these complexes is motivated, in part, by their promise for asymmetric catalysis.^{10–13} Pincer complexes have been modified by the

- (6) Lee, H. M.; Zeng, J. Y.; Hu, C. H.; Lee, M. T. Inorg. Chem. 2004, 43, 6822.
- (7) Gründemann, S.; Albrecht, M.; Loch, J. A.; Faller, J. W.; Crabtree, R. H. Organometallics 2001, 20, 5485.
- (8) Díez-Barra, E.; Guerra, J.; López-Solera, I.; Merino, S.; Rodríguez-López, J.; Sánehez-Verdú, P.; Tejeda, J. Organometallics 2003, 22, 541.
- (9) Kossoy, E.; Iron, M. A.; Rybtchinski, B.; Ben-David, Y.; Shimon, L. J. W.; Konstantinovski, L.; Martin, J. M. L.; Milstein, D. Chem.— Eur. J. 2005, 11, 2319.
- (10) (a) Xia, Y.-Q.; Tang, Y.-Y.; Liang, Z.-M.; Yu, C.-B.; Zhou, X.-G.; Li, R.-X.; Li, X.-J. J. Mol. Catal. A: Chem. 2005, 240, 132. (b) Motoyama, Y.; Nishiyama, H. Synlett 2003, 1883. (c) Medici, S.; Gagliardo, M.; Williams, S. B.; Chase, P. A.; Gladiali, S.; Lutz, M.; Spek, A. L.; van Klink, G. P. M.; van Koten, G. Helv. Chim. Acta 2005, 88, 694. (d) Takenaka, K.; Uozumi, Y. Adv. Synth. Catal. 2004, 346, 1693. (e) Baber, R. A.; Bedford, R. B.; Betham, M.; Blake, M. E.; Coles, S. J.; Haddow, M. F.; Hursthouse, M. B.; Orpen, A. G.; Pilarski, L. T.; Pringle, P. G.; Wingad, R. L. Chem. Commun. 2006, 3880.
- (11) Takenaka, K.; Minakawa, M.; Uozumi, Y. J. Am. Chem. Soc. 2005, 127, 12273.
- (12) Longmire, J. M.; Zhang, X. M.; Shang, M. Y. Organometallics 1998, 17, 4374.

Table 1. Selected Bond Lengths (Å) and Bond Angles (deg) for Complexes 9-13

	complex					
	9	10	11	12	13a	13b
Pd1-C1	1.971(2)	1.980(3)	2.005(2)	2.010(2)	1.970(1)	1.963(8)
Pd1-N1	2.025(2)	2.033(2)	2.055(2)	2.051(1)	2.029(1)	2.024(6)
Pd1-N2	2.023(2)	2.034(2)	2.055(2)	2.055(1)	2.033(1)	2.028(7)
Pd1-I1	2.7024(3)	2.7139(3)	2.7089(2)	2.7163(1)	2.7157(1)	2.7059(8)
C1-Pd1-I1	173.56(7)	175.60(8)	179.24(5)	178.10(4)	171.61(4)	175.5(2)
N1-Pd1-N2	174.15(7)	173.94(9)	177.39(6)	177.89(4)	173.04(4)	174.7(3)
N1-Pd1-C1	87.19(9)	86.57(10)	88.48(7)	89.56(5)	87.30(6)	87.3(3)
N2-Pd1-C1	87.04(8)	86.72(10)	88.97(7)	88.49(5)	85.92(6)	88.1(3)
twist angle	64.90	64.96	62.74	61.46	65.07	63.05

introduction of appropriate substituents onto either the methylene groups^{8,12} or donor atoms¹⁴ to generate chiral complexes. Complexes having a C_2 -symmetric ligand backbone might allow resolution of the enantiomers of metal complexes and could represent alternative strategies for the development of new chiral complexes.

We have recently communicated on PCP pincer complexes constructed upon *m*-terphenyl backbones that display highly rigid structures and twist angles Φ of up to 76° (Chart 4).¹⁵ Interconversion of atropisomers of these complexes was not detected even at elevated temperatures.

Since the success of the integration of *m*-terphenyl scaffolds to the PCP pincer complexes, it was thus of immediate concern to establish if NCN pincer ligands and complexes containing *m*-terphenyl scaffolds could be produced. In this work, we report on the synthesis and structural characterization of high-twist-angle NCN diimine pincer complexes. Furthermore, we report on the successful complete characterization of two diastereomerically pure NCN pincer complexes that demonstrate independently of NMR experiments that such complexes are both isolable and stable.

Results and Discussion

Synthesis of NCN Pincer Ligand Precursors and Complexes. While the synthesis of pincer complexes can be achieved by the reaction of metal salts with donorsubstituted hydrocarbons, it is found that the synthesis of NCN pincer complexes often fails from the corresponding NC(H)N ligand precursors.¹⁶ In our efforts to generate *m*-terphenyl-based PCP pincer complexes from PC(H)P precursors and palladium salts, only trans-spanning diphosphine complexes were obtained.¹⁷ Synthesis of the bona fide pincer complexes required utilization of the more reactive PC(Br)P precursors. In anticipation of similar challenges for generating *m*terphenyl NCN ligands, we initially prepared ligand NC-(Br)N precursor **4a** from **3a**.^{15,18} Compound **3a** was previously utilized for the synthesis of PC(Br)P ligands. Surprisingly, the reaction of **4a** with Pd₂(dba)₃ yielded a precipitate of palladium metal over time. NMR analysis of the resulting mixture provided no evidence for discernible complexes. Undaunted, we then prepared precursors having C–I bonds that would be more susceptible to oxidative addition. From iodoterphenyl **3b**, a series of NC(I)N ligand precursors, **4b**–**7b**, were prepared and characterized by standard synthetic methods (Scheme 1). As found for related PC(Br)P precursors, the related NC(X)N precursors showed evidence for both syn and anti isomers, as ascertained by ¹H NMR spectroscopy.

Satisfyingly, the reaction of ligand precursors 4b-7b with $Pd_2(dba)_3$ produces pincer complexes 9-12 in good yields (Scheme 2). The new materials were isolated as air-stable pale-yellow crystalline solids and fully characterized.

Related NCN ligand precursor **8** was prepared bearing the chiral substituent $\mathbf{R} = (S) \cdot \alpha$ -methylbenzyl from the reaction of the readily available chiral amine and **3b** (Scheme 3). Compound **8** reacts with Pd₂(dba)₃ to afford a mixture of complexes **13a** and **13b** (Scheme 3), which were separated by flash column chromatography. Because the rigidity of *m*-terphenyl PCP diphosphine pincer complexes was established by variable-temperature ¹H NMR spectroscopic studies (no evidence of the interconversion of the atropisomers even at temperatures up to 130 °C),¹⁵ the isolation of individual complexes **13a** and **13b** should provide a more direct and straightforward method to elucidate configuration stability.

X-ray Studies. Single-crystal structures of complexes 9–13 have been determined. A summary of the results are presented in Tables 1 and 2. Single crystals of compound 9–12 suitable for analysis by X-ray diffraction were grown by slow vapor diffusion of hexane into chloroform solutions. The structures of complexes 9 and 10 are portrayed in Figure 1, and the structures of complexes 11 and 12 are portrayed in Figure 2.

The structures of 9-12 are somewhat similar and reveal slightly distorted square-planar geometries for the palladium-(II) centers. The Pd-C1, Pd-N1, Pd-N2, and Pd-I1 bond lengths are comparable to values previously reported for NCN palladium pincer complexes.^{8,13,19} The planes contain-

⁽¹³⁾ Motoyama, Y.; Kawakami, H.; Shimozono, K.; Aoki, K.; Nishiyama, H. Organometallics 2002, 21, 3408.

⁽¹⁴⁾ Williams, B. S.; Dani, P.; Lutz, M.; Spek, A. L.; van Koten, G. Helv. Chim. Acta 2001, 84, 3519.

⁽¹⁵⁾ Ma, L.; Woloszynek, R. A.; Chen, W.; Ren, T.; Protasiewicz, J. D. Organometallics 2006, 25, 3301.

^{(16) (}a) Steenwinkel, P.; Gossage, R. A.; van Koten, G. *Chem.—Eur. J.* **1998**, *4*, 759. (b) Jung, I. G.; Son, S. U.; Park, K. H.; Chung, K. C.; Lee, J. W.; Chung, Y. K. *Organometallics* **2003**, *22*, 4715. (c) van de Kuil, L. A.; Luitjes, H.; Grove, D. M.; Zwikker, J. W.; van der Linden, J. G. M.; Roelofsen, A. M.; Jenneskens, L. W.; Drenth, W.; van Koten, G. *Organometallics* **1994**, *13*, 468.

^{(17) (}a) Smith, R. C.; Protasiewicz, J. D. *Organometallics* 2004, *23*, 4215.
(b) Smith, R. C.; Bodner, C. R.; Earl, M. J.; Sears, N. C.; Hill, N. E.; Bishop, L. M.; Sizemore, N.; Hehemann, D. T.; Bohn, J. J.; Protasiewicz, J. D. *J. Organomet. Chem.* 2005, *690*, 477.

^{(18) (}a) Saednya, A.; Hart, H. *Synthesis* **1996**, 1455. (b) Vinod, T.; Hart, H. *J. Org. Chem.* **1990**, *55*, 881.

Table 2.	Crystal	Data and	Structure	Refinement	Details for	9-13
----------	---------	----------	-----------	------------	-------------	------

	9-CHCl ₃	10	11
empirical formula	C33H24Cl3IN2Pd	C ₃₂ H ₃₅ N ₂ IPd	C ₃₆ H ₃₁ N ₂ IPd
fw	788.19	680.92	724.93
temp (K)	100	100	100
wavelength (Å)	0.71073	0.71073	0.71073
cryst syst	monoclinic	triclinic	monoclinic
space group	P2(1)/n	PI	P2(1)/c
unit cell dimens	12(1)/n	1 1	12(1)/0
$a(\hat{A})$	12 110(1)	9 7013(2)	17 3546(4)
$h(\Lambda)$	14.012(1)	10 4575(2)	14.2975(4)
$c(\dot{A})$	14.012(1) 18.052(2)	10.4575(2) 14.4524(3)	12 2046(3)
α (deg)	90.00	88 357(1)	90.00
β (deg)	107.876(2)	95 110(1)	00.881(1)
ρ (deg)	00.00	72,902(1)	99.001(1)
γ (deg)	90.00	(13.093(1))	2082.4(1)
7 (A ⁺)	4	1403.31(3)	2983.4 (1)
density (calcd_g/cm ³)	4 1 711	1 611	4
$\frac{density}{density} (calcu, g/cm^{-1})$	1./11	1.011	1.694
E(000)	1.903	1.704	1.004
F(000)	1344	0.00	1440 0.12 · · · 0.12 · · · 0.12
cryst size (mm)	$0.19 \times 0.14 \times 0.15$	$0.20 \times 0.15 \times 0.15$	$0.13 \times 0.12 \times 0.12$
cryst color and snape	COLOFIESS DIOCK	COLOTIESS BLOCK	COLOFIESS DIOCK
θ range data collection	1.78-28.28	2.03-27.50	1.19-27.50
limiting indices	-16 < h < 16	-12 < h < 12	$-22 \le h \le 22$
	$-18 \le k \le 18$	$-13 \le k \le 13$	$-18 \le k \le 18$
	-25 < l < 25	-18 < l < 18	-15 < l < 15
refins collected	31328	22801	42236
indep refins	$7604 (R_{\rm int} = 0.0205)$	$6411 (R_{int} = 0.0174)$	$6849 (R_{int} = 0.0309)$
refinement method	T <0.1 (0.10.51	full-matrix least squares on F^2	
data/restraint/ param	/604/0/361	6411/0/325	6849/0/365
GOF on F^2	1.118	1.169	1.062
final R indices $[I \ge 2\sigma(I)]^{a,b}$	R1 = 0.0266	R1 = 0.0237	R1 = 0.0212
	wR2 = 0.0615	wR2 = 0.0600	wR2 = 0.0540
R indices (all data)	R1 = 0.0276	R1 = 0.0251	R1 = 0.0251
	wR2 = 0.0621	wR2 = 0.0607	wR2 = 0.0563
	12	13a	13b • ¹ / ₃ C ₆ H ₆
empirical formula	12 CasHasNaIPd	13a CaeHauINaPd	13b • ¹ / ₃ C ₆ H ₆ C ₃₈ H ₃₃ IN ₂ Pd
empirical formula fw	12 C ₃₈ H ₃₅ N ₂ IPd 752.98	13a C ₃₆ H ₃₁ IN ₂ Pd 724 93	13b • ¹ / ₃ C ₆ H ₆ C ₃₈ H ₃₃ IN ₂ Pd 750.96
empirical formula fw temp (K)	12 C ₃₈ H ₃₅ N ₂ IPd 752.98 100	13a C ₃₆ H ₃₁ IN ₂ Pd 724.93 100	13b ¹ / ₃ C ₆ H ₆ C ₃₈ H ₃₃ IN ₂ Pd 750.96 100
empirical formula fw temp (K) wavelength (Å)	12 C ₃₈ H ₃₅ N ₂ IPd 752.98 100 0.71073	13a C ₃₆ H ₃₁ IN ₂ Pd 724.93 100 0.71073	13b ⁻¹ / ₃ C ₆ H ₆ C ₃₈ H ₃₃ IN ₂ Pd 750.96 100 0.71073
empirical formula fw temp (K) wavelength (Å) cryst syst	12 C ₃₈ H ₃₅ N ₂ IPd 752.98 100 0.71073 monoclinic	13a C ₃₆ H ₃₁ IN ₂ Pd 724.93 100 0.71073 trigonal	13b ¹ / ₃ C ₆ H ₆ C ₃₈ H ₃₃ IN ₂ Pd 750.96 100 0.71073 monoclinic
empirical formula fw temp (K) wavelength (Å) cryst syst space group	12 C ₃₈ H ₃₅ N ₂ IPd 752.98 100 0.71073 monoclinic C2/c	13a C ₃₆ H ₃₁ IN ₂ Pd 724.93 100 0.71073 trigonal P3(1)	13b ¹ / ₃ C ₆ H ₆ C ₃₈ H ₃₃ IN ₂ Pd 750.96 100 0.71073 monoclinic P2(1)
empirical formula fw temp (K) wavelength (Å) cryst syst space group unit cell dimens	12 C ₃₈ H ₃₅ N ₂ IPd 752.98 100 0.71073 monoclinic <i>C</i> 2/ <i>c</i>	13a C ₃₆ H ₃₁ IN ₂ Pd 724.93 100 0.71073 trigonal <i>P</i> 3(1)	13b ¹ / ₃ C ₆ H ₆ C ₃₈ H ₃₃ IN ₂ Pd 750.96 100 0.71073 monoclinic <i>P</i> 2(1)
empirical formula fw temp (K) wavelength (Å) cryst syst space group unit cell dimens a (Å)	12 C ₃₈ H ₃₅ N ₂ IPd 752.98 100 0.71073 monoclinic <i>C</i> 2/ <i>c</i> 27.4660(8)	13a C ₃₆ H ₃₁ IN ₂ Pd 724.93 100 0.71073 trigonal <i>P</i> 3(1) 15 7499(2)	13b ⁻¹ / ₃ C ₆ H ₆ C ₃₈ H ₃₃ IN ₂ Pd 750.96 100 0.71073 monoclinic P2(1) 10.0764(3)
empirical formula fw temp (K) wavelength (Å) cryst syst space group unit cell dimens a (Å) b (Å)	12 C ₃₈ H ₃₅ N ₂ IPd 752.98 100 0.71073 monoclinic C2/c 27.4660(8) 13.7460(4)	13a C ₃₆ H ₃₁ IN ₂ Pd 724.93 100 0.71073 trigonal <i>P</i> 3(1) 15.7499(2) 15.7499(2)	13b ⁻¹ / ₃ C ₆ H ₆ C ₃₈ H ₃₃ IN ₂ Pd 750.96 100 0.71073 monoclinic P2(1) 10.0764(3) 14.6621(4)
empirical formula fw temp (K) wavelength (Å) cryst syst space group unit cell dimens a (Å) b (Å) c (Å)	12 C ₃₈ H ₃₅ N ₂ IPd 752.98 100 0.71073 monoclinic C2/c 27.4660(8) 13.7460(4) 19.5017(6)	$\begin{array}{c} 13a \\ C_{36}H_{31}IN_2Pd \\ 724.93 \\ 100 \\ 0.71073 \\ trigonal \\ P3(1) \\ 15.7499(2) \\ 15.7499(2) \\ 10.5822(2) \end{array}$	$\begin{array}{c} {\bf 13b^{1/_{3}C_{6}H_{6}}} \\ \hline C_{38}H_{33}IN_{2}Pd \\ 750.96 \\ 100 \\ 0.71073 \\ monoclinic \\ P2(1) \\ \hline 10.0764(3) \\ 14.6621(4) \\ 33.0584(10) \\ \end{array}$
empirical formula fw temp (K) wavelength (Å) cryst syst space group unit cell dimens a (Å) b (Å) c (Å) a (deg)	12 C ₃₈ H ₃₅ N ₂ IPd 752.98 100 0.71073 monoclinic <i>C2/c</i> 27.4660(8) 13.7460(4) 19.5017(6) 90.00	13a C ₃₆ H ₃₁ IN ₂ Pd 724.93 100 0.71073 trigonal P3(1) 15.7499(2) 15.7499(2) 10.5822(2) 90.00	$\begin{array}{c} {\bf 13b^{1/_{3}C_{6}H_{6}}} \\ \hline C_{38}H_{33}IN_{2}Pd \\ 750.96 \\ 100 \\ 0.71073 \\ monoclinic \\ P2(1) \\ \hline 10.0764(3) \\ 14.6621(4) \\ 33.0584(10) \\ 90.00 \\ \end{array}$
empirical formula fw temp (K) wavelength (Å) cryst syst space group unit cell dimens a (Å) b (Å) c (Å) α (deg) β (deg)	12 C ₃₈ H ₃₅ N ₂ IPd 752.98 100 0.71073 monoclinic <i>C2/c</i> 27.4660(8) 13.7460(4) 19.5017(6) 90.00 121.316(1)	13a C ₃₆ H ₃₁ IN ₂ Pd 724.93 100 0.71073 trigonal P3(1) 15.7499(2) 15.7499(2) 10.5822(2) 90.00 90.00	$\begin{array}{c} {\bf 13b^{1/_{3}C_{6}H_{6}}} \\ \hline C_{38}H_{33}IN_{2}Pd \\ 750.96 \\ 100 \\ 0.71073 \\ monoclinic \\ P2(1) \\ \hline 10.0764(3) \\ 14.6621(4) \\ 33.0584(10) \\ 90.00 \\ 97.881(2) \\ \end{array}$
empirical formula fw temp (K) wavelength (Å) cryst syst space group unit cell dimens a (Å) b (Å) c (Å) a (deg) β (deg) ψ (deg)	12 C ₃₈ H ₃₅ N ₂ IPd 752.98 100 0.71073 monoclinic C2/c 27.4660(8) 13.7460(4) 19.5017(6) 90.00 121.316(1) 90.00	13a C ₃₆ H ₃₁ IN ₂ Pd 724.93 100 0.71073 trigonal P3(1) 15.7499(2) 15.7499(2) 10.5822(2) 90.00 90.00 120.00	$\begin{array}{c} {\bf 13b^{1/_{3}C_{6}H_{6}}} \\ \hline C_{38}H_{33}IN_{2}Pd \\ 750.96 \\ 100 \\ 0.71073 \\ monoclinic \\ P2(1) \\ \hline 10.0764(3) \\ 14.6621(4) \\ 33.0584(10) \\ 90.00 \\ 97.881(2) \\ 90.00 \\ \end{array}$
empirical formula fw temp (K) wavelength (Å) cryst syst space group unit cell dimens a (Å) b (Å) c (Å) c (Å) α (deg) β (deg) γ (deg)	$\begin{array}{c} 12 \\ C_{38}H_{35}N_{2}IPd \\ 752.98 \\ 100 \\ 0.71073 \\ monoclinic \\ C2/c \\ 27.4660(8) \\ 13.7460(4) \\ 19.5017(6) \\ 90.00 \\ 121.316(1) \\ 90.00 \\ 6290.2 (2) \end{array}$	13a C ₃₆ H ₃₁ IN ₂ Pd 724.93 100 0.71073 trigonal P3(1) 15.7499(2) 15.7499(2) 10.5822(2) 90.00 90.00 2273.33(6)	$\begin{array}{r} 13b^{1/_{3}}C_{6}H_{6}\\ \hline \\ C_{38}H_{33}IN_{2}Pd\\ 750.96\\ 100\\ 0.71073\\ monoclinic\\ P2(1)\\ \hline \\ 10.0764(3)\\ 14.6621(4)\\ 33.0584(10)\\ 90.00\\ 97.881(2)\\ 90.00\\ 4838.0(2)\\ \end{array}$
empirical formula fw temp (K) wavelength (Å) cryst syst space group unit cell dimens a (Å) b (Å) c (Å) α (deg) β (deg) γ (deg) V (Å ³) 7	12 C ₃₈ H ₃₅ N ₂ IPd 752.98 100 0.71073 monoclinic C2/c 27.4660(8) 13.7460(4) 19.5017(6) 90.00 121.316(1) 90.00 6290.2 (3) 8	13a C ₃₆ H ₃₁ IN ₂ Pd 724.93 100 0.71073 trigonal P3(1) 15.7499(2) 15.7499(2) 10.5822(2) 90.00 90.00 120.00 2273.33(6)	$\begin{array}{c} 13b^{1/_{3}}C_{6}H_{6}\\ \hline C_{38}H_{33}IN_{2}Pd\\ 750.96\\ 100\\ 0.71073\\ monoclinic\\ P2(1)\\ \hline 10.0764(3)\\ 14.6621(4)\\ 33.0584(10)\\ 90.00\\ 97.881(2)\\ 90.00\\ 4838.0(2)\\ 6\end{array}$
empirical formula fw temp (K) wavelength (Å) cryst syst space group unit cell dimens a (Å) b (Å) c (Å) c (Å) α (deg) β (deg) γ (deg) V (Å ³) Z density (caled α (cm ³)	12 C ₃₈ H ₃₅ N ₂ IPd 752.98 100 0.71073 monoclinic C2/c 27.4660(8) 13.7460(4) 19.5017(6) 90.00 121.316(1) 90.00 6290.2 (3) 8 1,590	13a C ₃₆ H ₃₁ IN ₂ Pd 724.93 100 0.71073 trigonal P3(1) 15.7499(2) 15.7499(2) 10.5822(2) 90.00 90.00 120.00 2273.33(6) 3 1580	$\begin{array}{c} {\bf 13b^{1/_{3}C_{6}H_{6}}} \\ \hline C_{38}H_{33}IN_{2}Pd \\ 750.96 \\ 100 \\ 0.71073 \\ monoclinic \\ P2(1) \\ \hline 10.0764(3) \\ 14.6621(4) \\ 33.0584(10) \\ 90.00 \\ 97.881(2) \\ 90.00 \\ 4838.0(2) \\ 6 \\ 1.547 \\ \end{array}$
empirical formula fw temp (K) wavelength (Å) cryst syst space group unit cell dimens a (Å) b (Å) c (Å) c (Å) α (deg) β (deg) γ (deg) V (Å ³) Z density (calcd, g/cm ³) abs coeff (mm ⁻¹)	12 C ₃₈ H ₃₅ N ₂ IPd 752.98 100 0.71073 monoclinic C2/c 27.4660(8) 13.7460(4) 19.5017(6) 90.00 121.316(1) 90.00 6290.2 (3) 8 1.590 1.601	13a C ₃₆ H ₃₁ IN ₂ Pd 724.93 100 0.71073 trigonal P3(1) 15.7499(2) 15.7499(2) 10.5822(2) 90.00 90.00 120.00 2273.33(6) 3 1.589 1.658	$\begin{array}{c} {\bf 13b^{1/3}C_6H_6} \\ \hline C_{38}H_{33}IN_2Pd \\ 750.96 \\ 100 \\ 0.71073 \\ monoclinic \\ P2(1) \\ \hline 10.0764(3) \\ 14.6621(4) \\ 33.0584(10) \\ 90.00 \\ 97.881(2) \\ 90.00 \\ 4838.0(2) \\ 6 \\ 1.547 \\ 1.561 \\ \end{array}$
empirical formula fw temp (K) wavelength (Å) cryst syst space group unit cell dimens a (Å) b (Å) c (Å) α (deg) β (deg) γ (deg) V (Å ³) Z density (calcd, g/cm ³) abs coeff (mm ⁻¹) E^{VOO}	$\begin{array}{c} 12 \\ C_{38}H_{35}N_{2}IPd \\ 752.98 \\ 100 \\ 0.71073 \\ monoclinic \\ C2/c \\ 27.4660(8) \\ 13.7460(4) \\ 19.5017(6) \\ 90.00 \\ 121.316(1) \\ 90.00 \\ 6290.2 (3) \\ 8 \\ 1.590 \\ 1.601 \\ 2009 \\ \end{array}$	13a C ₃₆ H ₃₁ IN ₂ Pd 724.93 100 0.71073 trigonal P3(1) 15.7499(2) 15.7499(2) 10.5822(2) 90.00 90.00 120.00 2273.33(6) 3 1.589 1.658 1080	$\begin{array}{c} {\bf 13b^{1/3}C_6H_6} \\ \hline C_{38}H_{33}IN_2Pd \\ 750.96 \\ 100 \\ 0.71073 \\ monoclinic \\ P2(1) \\ \hline 10.0764(3) \\ 14.6621(4) \\ 33.0584(10) \\ 90.00 \\ 97.881(2) \\ 90.00 \\ 4838.0(2) \\ 6 \\ 1.547 \\ 1.561 \\ 2244 \\ \end{array}$
empirical formula fw temp (K) wavelength (Å) cryst syst space group unit cell dimens a (Å) b (Å) c (Å) α (deg) β (deg) γ (deg) V (Å ³) Z density (calcd, g/cm ³) abs coeff (mm ⁻¹) F(000)	$\begin{array}{c} 12 \\ C_{38}H_{35}N_{2}IPd \\ 752.98 \\ 100 \\ 0.71073 \\ monoclinic \\ C2/c \\ 27.4660(8) \\ 13.7460(4) \\ 19.5017(6) \\ 90.00 \\ 121.316(1) \\ 90.00 \\ 6290.2 (3) \\ 8 \\ 1.590 \\ 1.601 \\ 3008 \\ 0.35 \times 0.25 \times 0.20 \\ \end{array}$	$\begin{array}{c} 13a \\ C_{36}H_{31}IN_2Pd \\ 724.93 \\ 100 \\ 0.71073 \\ trigonal \\ P3(1) \\ 15.7499(2) \\ 15.7499(2) \\ 10.5822(2) \\ 90.00 \\ 90.00 \\ 120.00 \\ 2273.33(6) \\ 3 \\ 1.589 \\ 1.658 \\ 1080 \\ 0.18 \times 0.17 \times 0.17 \end{array}$	$\begin{array}{c} {\bf 13b^{1/3}C_6H_6} \\ \hline C_{38}H_{33}IN_2Pd \\ 750.96 \\ 100 \\ 0.71073 \\ monoclinic \\ P2(1) \\ \hline 10.0764(3) \\ 14.6621(4) \\ 33.0584(10) \\ 90.00 \\ 97.881(2) \\ 90.00 \\ 4838.0(2) \\ 6 \\ 1.547 \\ 1.561 \\ 2244 \\ 0.24 \times 0.21 \times 0.01 \\ \hline \end{array}$
empirical formula fw temp (K) wavelength (Å) cryst syst space group unit cell dimens a (Å) b (Å) c (Å) α (deg) β (deg) γ (deg) V (Å ³) Z density (calcd, g/cm ³) abs coeff (mm ⁻¹) F(000) cryst size (mm) cryst size (mm)	$\begin{array}{c} 12\\ C_{38}H_{35}N_{2}IPd\\ 752.98\\ 100\\ 0.71073\\ monoclinic\\ C2/c\\ 27.4660(8)\\ 13.7460(4)\\ 19.5017(6)\\ 90.00\\ 121.316(1)\\ 90.00\\ 6290.2\ (3)\\ 8\\ 1.590\\ 1.601\\ 3008\\ 0.35\times 0.25\times 0.20\\ colorigone black\\ colorigene black\\ col$	$\begin{array}{c} 13a \\ C_{36}H_{31}IN_2Pd \\ 724.93 \\ 100 \\ 0.71073 \\ trigonal \\ P3(1) \\ 15.7499(2) \\ 15.7499(2) \\ 10.5822(2) \\ 90.00 \\ 90.00 \\ 90.00 \\ 120.00 \\ 2273.33(6) \\ 3 \\ 1.589 \\ 1.658 \\ 1080 \\ 0.18 \times 0.17 \times 0.17 \\ otherwork back \\ extract large larg$	$\begin{array}{c} 13b^{1/3}C_{6}H_{6} \\ \hline \\ C_{38}H_{33}IN_2Pd \\ 750.96 \\ 100 \\ 0.71073 \\ monoclinic \\ P2(1) \\ \hline \\ 10.0764(3) \\ 14.6621(4) \\ 33.0584(10) \\ 90.00 \\ 97.881(2) \\ 90.00 \\ 4838.0(2) \\ 6 \\ 1.547 \\ 1.561 \\ 2244 \\ 0.24 \times 0.21 \times 0.01 \\ coloridat thin filter \\ \end{array}$
empirical formula fw temp (K) wavelength (Å) cryst syst space group unit cell dimens a (Å) b (Å) c (Å) α (deg) β (deg) γ (deg) V (Å ³) Z density (calcd, g/cm ³) abs coeff (mm ⁻¹) F(000) cryst size (mm) cryst color and shape 0 mergen data sellate	$\begin{array}{c} 12 \\ C_{38}H_{35}N_2IPd \\ 752.98 \\ 100 \\ 0.71073 \\ monoclinic \\ C2/c \\ \hline 27.4660(8) \\ 13.7460(4) \\ 19.5017(6) \\ 90.00 \\ 121.316(1) \\ 90.00 \\ 6290.2 (3) \\ 8 \\ 1.590 \\ 1.601 \\ 3008 \\ 0.35 \times 0.25 \times 0.20 \\ colorless block \\ 1.72 + 27.60 \\ colorless block \\ colorless $	$\begin{array}{c} 13a \\ C_{36}H_{31}IN_2Pd \\ 724.93 \\ 100 \\ 0.71073 \\ trigonal \\ P3(1) \\ \hline 15.7499(2) \\ 15.7499(2) \\ 10.5822(2) \\ 90.00 \\ 90.00 \\ 120.00 \\ 2273.33(6) \\ 3 \\ 1.589 \\ 1.589 \\ 1.658 \\ 1080 \\ 0.18 \times 0.17 \times 0.17 \\ colorless block \\ 2.44 \ 27\ 00 \end{array}$	$\begin{array}{c} 13b^{1/3}C_{6}H_{6} \\ \hline C_{38}H_{33}IN_2Pd \\ 750.96 \\ 100 \\ 0.71073 \\ monoclinic \\ P2(1) \\ \hline 10.0764(3) \\ 14.6621(4) \\ 33.0584(10) \\ 90.00 \\ 97.881(2) \\ 90.00 \\ 4838.0(2) \\ 6 \\ 1.547 \\ 1.561 \\ 2244 \\ 0.24 \times 0.21 \times 0.01 \\ colorless thin plate \\ 1.24 \times 0.21 \\ 20.7 \\ \hline \end{array}$
empirical formula fw temp (K) wavelength (Å) cryst syst space group unit cell dimens a (Å) b (Å) c (Å) c (Å) α (deg) β (deg) γ (deg) V (Å ³) Z density (calcd, g/cm ³) abs coeff (mm ⁻¹) F(000) cryst size (mm) cryst color and shape θ range data collctn Uniting in the product of the product	12 $C_{38}H_{35}N_2IPd$ 752.98 100 0.71073 monoclinic C2/c 27.4660(8) 13.7460(4) 19.5017(6) 90.00 121.316(1) 90.00 6290.2 (3) 8 1.590 1.601 3008 0.35 × 0.25 × 0.20 colorless block 1.72-27.50 24 < boxes 25	$\begin{array}{c} 13a \\ C_{36}H_{31}IN_2Pd \\ 724.93 \\ 100 \\ 0.71073 \\ trigonal \\ P3(1) \\ 15.7499(2) \\ 15.7499(2) \\ 15.7499(2) \\ 10.5822(2) \\ 90.00 \\ 90.00 \\ 120.00 \\ 2273.33(6) \\ 3 \\ 1.589 \\ 1.658 \\ 1080 \\ 0.18 \times 0.17 \times 0.17 \\ colorless block \\ 2.44-27.99 \\ 205 4 \neq 20 \end{array}$	$\begin{array}{c} 13b^{1/3}C_{6}H_{6} \\ \hline C_{38}H_{33}IN_2Pd \\ 750.96 \\ 100 \\ 0.71073 \\ monoclinic \\ P2(1) \\ \hline 10.0764(3) \\ 14.6621(4) \\ 33.0584(10) \\ 90.00 \\ 97.881(2) \\ 90.00 \\ 4838.0(2) \\ 6 \\ 1.547 \\ 1.561 \\ 2244 \\ 0.24 \times 0.21 \times 0.01 \\ colorless thin plate \\ 1.24-30.67 \\ 1.44 \leq b \leq 12 \\ \end{array}$
empirical formula fw temp (K) wavelength (Å) cryst syst space group unit cell dimens a (Å) b (Å) c (Å) c (Å) a (deg) β (deg) γ (deg) V (Å ³) Z density (calcd, g/cm ³) abs coeff (mm ⁻¹) F(000) cryst size (mm) cryst color and shape θ range data collctn limiting indices	$\begin{array}{c} 12\\ C_{38}H_{35}N_{2}IPd\\ 752.98\\ 100\\ 0.71073\\ monoclinic\\ C2/c\\ 27.4660(8)\\ 13.7460(4)\\ 19.5017(6)\\ 90.00\\ 121.316(1)\\ 90.00\\ 6290.2\ (3)\\ 8\\ 1.590\\ 1.601\\ 3008\\ 0.35\times 0.25\times 0.20\\ colorless block\\ 1.72-27.50\\ -34 < h < 35\\ 1.7 < h < 35\\ 1.7 < h < 37\\ 1.7 < h $	$\begin{array}{c} 13a \\ C_{36}H_{31}IN_2Pd \\ 724.93 \\ 100 \\ 0.71073 \\ trigonal \\ P3(1) \\ 15.7499(2) \\ 15.7499(2) \\ 15.7499(2) \\ 10.5822(2) \\ 90.00 \\ 90.00 \\ 120.00 \\ 2273.33(6) \\ 3 \\ 1.589 \\ 1.658 \\ 1080 \\ 0.18 \times 0.17 \times 0.17 \\ colorless block \\ 2.44-27.99 \\ -20 < h < 20 \\ 20 < h$	$\begin{array}{c} 13b^{-1}/_{3}C_{6}H_{6} \\ \hline C_{38}H_{33}IN_{2}Pd \\ 750.96 \\ 100 \\ 0.71073 \\ monoclinic \\ P2(1) \\ \hline 10.0764(3) \\ 14.6621(4) \\ 33.0584(10) \\ 90.00 \\ 97.881(2) \\ 90.00 \\ 4838.0(2) \\ 6 \\ 1.547 \\ 1.561 \\ 2244 \\ 0.24 \times 0.21 \times 0.01 \\ colorless thin plate \\ 1.24-30.67 \\ -14 < h < 13 \\ 200 < h < 20 \\ \end{array}$
empirical formula fw temp (K) wavelength (Å) cryst syst space group unit cell dimens a (Å) b (Å) c (Å) c (Å) α (deg) β (deg) γ (deg) V (Å ³) Z density (calcd, g/cm ³) abs coeff (mm ⁻¹) F(000) cryst size (mm) cryst color and shape θ range data collctn limiting indices	$\begin{array}{c} 12\\ C_{38}H_{35}N_{2}IPd\\ 752.98\\ 100\\ 0.71073\\ monoclinic\\ C2/c\\ 27.4660(8)\\ 13.7460(4)\\ 19.5017(6)\\ 90.00\\ 121.316(1)\\ 90.00\\ 6290.2\ (3)\\ 8\\ 1.590\\ 1.601\\ 3008\\ 0.35\times 0.25\times 0.20\\ colorless block\\ 1.72-27.50\\ -34 < h < 35\\ -17 < k < 17\\ 25 < l \cdot 25\\ \end{array}$	$\begin{array}{c} 13a \\ C_{36}H_{31}IN_2Pd \\ 724.93 \\ 100 \\ 0.71073 \\ trigonal \\ P3(1) \\ 15.7499(2) \\ 15.7499(2) \\ 10.5822(2) \\ 90.00 \\ 90.00 \\ 120.00 \\ 2273.33(6) \\ 3 \\ 1.589 \\ 1.658 \\ 1080 \\ 0.18 \times 0.17 \times 0.17 \\ colorless block \\ 2.44-27.99 \\ -20 < h < 20 \\ -20 < k < 20 \\ 12 < l < l > 12 \\ l < l < l < l > 12 \\ l < l < l < l < l > 12 \\ l < l < l < l < l < l < l < l < l < l$	$\begin{array}{c} 13b^{-1}/_{3}C_{6}H_{6} \\ \hline C_{38}H_{33}IN_{2}Pd \\ 750.96 \\ 100 \\ 0.71073 \\ monoclinic \\ P2(1) \\ \hline 10.0764(3) \\ 14.6621(4) \\ 33.0584(10) \\ 90.00 \\ 97.881(2) \\ 90.00 \\ 4838.0(2) \\ 6 \\ 1.547 \\ 1.561 \\ 2244 \\ 0.24 \times 0.21 \times 0.01 \\ colorless thin plate \\ 1.24-30.67 \\ -14 < h < 13 \\ -20 < k < 20 \\ 47 < l \leq 4 \leq 20 \\ 47 < l < 20 \\ 47 <$
empirical formula fw temp (K) wavelength (Å) cryst syst space group unit cell dimens a (Å) b (Å) c (Å) α (deg) β (deg) γ (deg) V (Å ³) Z density (calcd, g/cm ³) abs coeff (mm ⁻¹) F(000) cryst size (mm) cryst size (mm) cryst color and shape θ range data collctn limiting indices	$\begin{array}{c} 12\\ C_{38}H_{35}N_{2}IPd\\ 752.98\\ 100\\ 0.71073\\ monoclinic\\ C2/c\\ 27.4660(8)\\ 13.7460(4)\\ 19.5017(6)\\ 90.00\\ 121.316(1)\\ 90.00\\ 6290.2\ (3)\\ 8\\ 1.590\\ 1.601\\ 3008\\ 0.35\times 0.25\times 0.20\\ colorless block\\ 1.72-27.50\\ -34 < h < 35\\ -17 < k < 17\\ -25 < l < 25\\ 21942\\ \end{array}$	$\begin{array}{c} 13a \\ C_{36}H_{31}IN_2Pd \\ 724.93 \\ 100 \\ 0.71073 \\ trigonal \\ P3(1) \\ 15.7499(2) \\ 15.7499(2) \\ 10.5822(2) \\ 90.00 \\ 90.00 \\ 120.00 \\ 2273.33(6) \\ 3 \\ 1.589 \\ 1.658 \\ 1080 \\ 0.18 \times 0.17 \times 0.17 \\ colorless block \\ 2.44-27.99 \\ -20 < h < 20 \\ -20 < k < 20 \\ -13 < l < 13 \\ 51541 \\ \end{array}$	$\begin{array}{c} 13b^{1/3}C_{6}H_{6} \\ \hline C_{38}H_{33}IN_2Pd \\ 750.96 \\ 100 \\ 0.71073 \\ monoclinic \\ P2(1) \\ \hline 10.0764(3) \\ 14.6621(4) \\ 33.0584(10) \\ 90.00 \\ 97.881(2) \\ 90.00 \\ 4838.0(2) \\ 6 \\ 1.547 \\ 1.561 \\ 2244 \\ 0.24 \times 0.21 \times 0.01 \\ colorless thin plate \\ 1.24-30.67 \\ -14 < h < 13 \\ -20 < k < 20 \\ -47 < l < 46 \\ costa7 \\ \end{array}$
empirical formula fw temp (K) wavelength (Å) cryst syst space group unit cell dimens a (Å) b (Å) c (Å) α (deg) β (deg) γ (deg) V (Å ³) Z density (calcd, g/cm ³) abs coeff (mm ⁻¹) F(000) cryst size (mm) cryst color and shape θ range data collctn limiting indices	$\begin{array}{c} 12\\ C_{38}H_{35}N_{2}IPd\\ 752.98\\ 100\\ 0.71073\\ monoclinic\\ C2/c\\ 27.4660(8)\\ 13.7460(4)\\ 19.5017(6)\\ 90.00\\ 121.316(1)\\ 90.00\\ 6290.2\ (3)\\ 8\\ 1.590\\ 1.601\\ 3008\\ 0.35\times 0.25\times 0.20\\ colorless block\\ 1.72-27.50\\ -34 < h < 35\\ -17 < k < 17\\ -25 < l < 25\\ 31842\\ 7102\ (h) = 0.017\ (h) \end{array}$	$\begin{array}{c} 13a \\ C_{36}H_{31}IN_{2}Pd \\ 724.93 \\ 100 \\ 0.71073 \\ trigonal \\ P3(1) \\ 15.7499(2) \\ 15.7499(2) \\ 10.5822(2) \\ 90.00 \\ 90.00 \\ 120.00 \\ 2273.33(6) \\ 3 \\ 1.589 \\ 1.658 \\ 1080 \\ 0.18 \times 0.17 \times 0.17 \\ colorless block \\ 2.44-27.99 \\ -20 < h < 20 \\ -20 < k < 20 \\ -13 < l < 13 \\ 51541 \\ 7100 (R = -0.0212) \end{array}$	$\begin{array}{c} 13b^{1/3}C_{6}H_{6} \\ \hline C_{38}H_{33}IN_2Pd \\ 750.96 \\ 100 \\ 0.71073 \\ monoclinic \\ P2(1) \\ \hline 10.0764(3) \\ 14.6621(4) \\ 33.0584(10) \\ 90.00 \\ 97.881(2) \\ 90.00 \\ 4838.0(2) \\ 6 \\ 1.547 \\ 1.561 \\ 2244 \\ 0.24 \times 0.21 \times 0.01 \\ colorless thin plate \\ 1.24 - 30.67 \\ -14 < h < 13 \\ -20 < k < 20 \\ -47 < l < 46 \\ 92517 \\ 0.102 (B = -0.1010) \\ \end{array}$
empirical formula fw temp (K) wavelength (Å) cryst syst space group unit cell dimens a (Å) b (Å) c (Å) a (deg) β (deg) γ (deg) V (Å ³) Z density (calcd, g/cm ³) abs coeff (mm ⁻¹) F(000) cryst size (mm) cryst color and shape θ range data collctn limiting indices reflns collected indep reflns	$\begin{array}{c} 12\\ C_{38}H_{35}N_2IPd\\ 752.98\\ 100\\ 0.71073\\ monoclinic\\ C2/c\\ \hline\\ 27.4660(8)\\ 13.7460(4)\\ 19.5017(6)\\ 90.00\\ 121.316(1)\\ 90.00\\ 6290.2 (3)\\ 8\\ 1.590\\ 1.601\\ 3008\\ 0.35\times 0.25\times 0.20\\ colorless block\\ 1.72-27.50\\ -34 < h < 35\\ -17 < k < 17\\ -25 < l < 25\\ 31842\\ 7193 (R_{int} = 0.0174)\\ \end{array}$	$\begin{array}{c} 13a \\ C_{36}H_{31}IN_2Pd \\ 724.93 \\ 100 \\ 0.71073 \\ trigonal \\ P3(1) \\ \hline 15.7499(2) \\ 15.7499(2) \\ 10.5822(2) \\ 90.00 \\ 90.00 \\ 120.00 \\ 2273.33(6) \\ 3 \\ 1.589 \\ 1.658 \\ 1080 \\ 0.18 \times 0.17 \times 0.17 \\ colorless block \\ 2.44-27.99 \\ -20 < h < 20 \\ -20 < h < 20 \\ -13 < l < 13 \\ 51541 \\ 7199(R_{int} = 0.0342) \\ f 1 + 1000 \\ f 1$	$\begin{array}{c} {\bf 13b^{1/3}C_6H_6} \\ \hline \\ C_{38}H_{33}IN_2Pd \\ 750.96 \\ 100 \\ 0.71073 \\ monoclinic \\ P2(1) \\ \hline \\ 10.0764(3) \\ 14.6621(4) \\ 33.0584(10) \\ 90.00 \\ 97.881(2) \\ 90.00 \\ 4838.0(2) \\ 6 \\ 1.547 \\ 1.561 \\ 2244 \\ 0.24 \times 0.21 \times 0.01 \\ colorless thin plate \\ 1.24 - 30.67 \\ -14 < h < 13 \\ -20 < k < 20 \\ -47 < l < 46 \\ 92517 \\ 29483 (R_{int} = 0.1219) \\ \end{array}$
empirical formula fw temp (K) wavelength (Å) cryst syst space group unit cell dimens a (Å) b (Å) c (Å) c (Å) α (deg) β (deg) γ (deg) V (Å ³) Z density (calcd, g/cm ³) abs coeff (mm ⁻¹) F(000) cryst size (mm) cryst color and shape θ range data collctn limiting indices reflns collected indep reflns refinement method	$\begin{array}{c} 12\\ C_{38}H_{35}N_{2}IPd\\ 752.98\\ 100\\ 0.71073\\ monoclinic\\ C2/c\\ 27.4660(8)\\ 13.7460(4)\\ 19.5017(6)\\ 90.00\\ 121.316(1)\\ 90.00\\ 6290.2(3)\\ 8\\ 1.590\\ 1.601\\ 3008\\ 0.35\times0.25\times0.20\\ colorless block\\ 1.72-27.50\\ -34 < h < 35\\ -17 < k < 17\\ -25 < l < 25\\ 31842\\ 7193 (R_{int} = 0.0174)\\ \end{array}$	$\begin{array}{c} 13a \\ C_{36}H_{31}IN_2Pd \\ 724.93 \\ 100 \\ 0.71073 \\ trigonal \\ P3(1) \\ \hline 15.7499(2) \\ 15.7499(2) \\ 15.7499(2) \\ 10.5822(2) \\ 90.00 \\ 90.00 \\ 120.00 \\ 2273.33(6) \\ 3 \\ 1.589 \\ 1.658 \\ 1080 \\ 0.18 \times 0.17 \times 0.17 \\ colorless block \\ 2.44 - 27.99 \\ -20 < h < 20 \\ -20 < h < 20 \\ -20 < h < 20 \\ -13 < l < 13 \\ 51541 \\ 7199 (R_{int} = 0.0342) \\ full-matrix least squares on F^2$	$\begin{array}{c} 13b^{1/3}C_{6}H_{6} \\ \hline C_{38}H_{33}IN_{2}Pd \\ 750.96 \\ 100 \\ 0.71073 \\ monoclinic \\ P2(1) \\ \hline 10.0764(3) \\ 14.6621(4) \\ 33.0584(10) \\ 90.00 \\ 97.881(2) \\ 90.00 \\ 4838.0(2) \\ 6 \\ 1.547 \\ 1.561 \\ 2244 \\ 0.24 \times 0.21 \times 0.01 \\ colorless thin plate \\ 1.24-30.67 \\ -14 < h < 13 \\ -20 < k < 20 \\ -47 < l < 46 \\ 92517 \\ 29483 (R_{int} = 0.1219) \\ \hline 20403444000 \\ 0.1219 \\ \hline 0$
empirical formula fw temp (K) wavelength (Å) cryst syst space group unit cell dimens a (Å) b (Å) c (Å) c (Å) a (deg) β (deg) γ (deg) V (Å ³) Z density (calcd, g/cm ³) abs coeff (mm ⁻¹) F(000) cryst size (mm) cryst color and shape θ range data collctn limiting indices reflns collected indep reflns refinement method data/restraint/ param	$\begin{array}{c} 12\\ C_{38}H_{35}N_{2}IPd\\ 752.98\\ 100\\ 0.71073\\ monoclinic\\ C2/c\\ 27.4660(8)\\ 13.7460(4)\\ 19.5017(6)\\ 90.00\\ 121.316(1)\\ 90.00\\ 6290.2\ (3)\\ 8\\ 1.590\\ 1.601\\ 3008\\ 0.35\times 0.25\times 0.20\\ colorless block\\ 1.72-27.50\\ -34 < h < 35\\ -17 < k < 17\\ -25 < l < 25\\ 31842\\ 7193\ (R_{int} = 0.0174)\\ \\ 7193/0/386\\ \end{array}$	$\begin{array}{c} 13a \\ C_{36}H_{31}IN_2Pd \\ 724.93 \\ 100 \\ 0.71073 \\ trigonal \\ P3(1) \\ 15.7499(2) \\ 15.7499(2) \\ 15.7499(2) \\ 10.5822(2) \\ 90.00 \\ 90.00 \\ 120.00 \\ 2273.33(6) \\ 3 \\ 1.589 \\ 1.658 \\ 1080 \\ 0.18 \times 0.17 \times 0.17 \\ colorless block \\ 2.44-27.99 \\ -20 < k < 20 \\ -20 < k < 20 \\ -13 < l < 13 \\ 51541 \\ 7199 \ (R_{int} = 0.0342) \\ full-matrix least squares on F^2 \\ 71999/1/363 \\ \end{array}$	$\begin{array}{c} \mathbf{13b^{1/3}C_{6}H_{6}} \\ \hline \mathbf{C}_{38}\mathbf{H}_{33}\mathbf{IN}_{2}\mathbf{Pd} \\ 750.96 \\ 100 \\ 0.71073 \\ \text{monoclinic} \\ P2(1) \\ \hline \mathbf{10.0764(3)} \\ 14.6621(4) \\ 33.0584(10) \\ 90.00 \\ 97.881(2) \\ 90.00 \\ 4838.0(2) \\ 6 \\ 1.547 \\ 1.561 \\ 2244 \\ 0.24 \times 0.21 \times 0.01 \\ \text{colorless thin plate} \\ 1.24-30.67 \\ -14 < h < 13 \\ -20 < k < 20 \\ -47 < l < 46 \\ 92517 \\ 29483(R_{\text{int}} = 0.1219) \\ \hline 29483/1/1111 \\ 90.770 \\ \end{array}$
empirical formula fw temp (K) wavelength (Å) cryst syst space group unit cell dimens a (Å) b (Å) c (Å) c (Å) a (deg) β (deg) γ (deg) V (Å ³) Z density (calcd, g/cm ³) abs coeff (mm ⁻¹) F(000) cryst size (mm) cryst size (mm) cryst color and shape θ range data collctn limiting indices reflns collected indep reflns refinement method data/restraint/ param GOF on F^2	$\begin{array}{c} 12\\ C_{38}H_{35}N_{2}IPd\\ 752.98\\ 100\\ 0.71073\\ monoclinic\\ C2/c\\ 27.4660(8)\\ 13.7460(4)\\ 19.5017(6)\\ 90.00\\ 121.316(1)\\ 90.00\\ 6290.2 (3)\\ 8\\ 1.590\\ 1.601\\ 3008\\ 0.35 \times 0.25 \times 0.20\\ colorless block\\ 1.72-27.50\\ -34 < h < 35\\ -17 < k < 17\\ -25 < l < 25\\ 31842\\ 7193 (R_{int} = 0.0174)\\ \\\hline 7193/0/386\\ 1.090\\ 100 \\ 0.0155\\ \end{array}$	$\begin{array}{c} 13a \\ C_{36}H_{31}IN_2Pd \\ 724.93 \\ 100 \\ 0.71073 \\ trigonal \\ P3(1) \\ 15.7499(2) \\ 15.7499(2) \\ 15.7499(2) \\ 10.5822(2) \\ 90.00 \\ 90.00 \\ 120.00 \\ 2273.33(6) \\ 3 \\ 1.589 \\ 1.658 \\ 1080 \\ 0.18 \times 0.17 \times 0.17 \\ colorless block \\ 2.44-27.99 \\ -20 < h < 20 \\ -20 < k < 20 \\ -13 < l < 13 \\ 51541 \\ 7199 \ (R_{int} = 0.0342) \\ full-matrix least squares on F^2 \\ 7199/1/363 \\ 1.019 \\ 0.011 \\ 1.011 $	$\begin{array}{c} 13b^{-1}/_{3}C_{6}H_{6} \\ \hline C_{38}H_{33}IN_{2}Pd \\ 750.96 \\ 100 \\ 0.71073 \\ monoclinic \\ P2(1) \\ \hline 10.0764(3) \\ 14.6621(4) \\ 33.0584(10) \\ 90.00 \\ 97.881(2) \\ 90.00 \\ 4838.0(2) \\ 6 \\ 1.547 \\ 1.561 \\ 2244 \\ 0.24 \times 0.21 \times 0.01 \\ colorless thin plate \\ 1.24-30.67 \\ -14 < h < 13 \\ -20 < k < 20 \\ -47 < l < 46 \\ 92517 \\ 29483 (R_{int} = 0.1219) \\ \hline 29483/1/1111 \\ 0.978 \\ 0.9557 \\ \hline \end{array}$
empirical formula fw temp (K) wavelength (Å) cryst syst space group unit cell dimens a (Å) b (Å) c (Å) c (Å) α (deg) β (deg) γ (deg) V (Å ³) Z density (calcd, g/cm ³) abs coeff (mm ⁻¹) F(000) cryst size (mm) cryst color and shape θ range data collctn limiting indices refins collected indep refins refinement method data/restraint/ param GOF on F^2 final R indices $[I > 2\sigma(I)]^{a,b}$	$\begin{array}{c} 12\\ C_{38}H_{35}N_{2}IPd\\ 752.98\\ 100\\ 0.71073\\ monoclinic\\ C2/c\\ 27.4660(8)\\ 13.7460(4)\\ 19.5017(6)\\ 90.00\\ 121.316(1)\\ 90.00\\ 6290.2(3)\\ 8\\ 1.590\\ 1.601\\ 3008\\ 0.35 \times 0.25 \times 0.20\\ colorless block\\ 1.72-27.50\\ -34 < h < 35\\ -17 < k < 17\\ -25 < l < 25\\ 31842\\ 7193(R_{int} = 0.0174)\\ \\\hline 7193/0/386\\ 1.090\\ R1 = 0.0165\\ \hline D2 0.0151\\ \end{array}$	$\begin{array}{c} 13a \\ C_{36}H_{31}IN_{2}Pd \\ 724.93 \\ 100 \\ 0.71073 \\ trigonal \\ P3(1) \\ 15.7499(2) \\ 15.7499(2) \\ 15.7499(2) \\ 10.5822(2) \\ 90.00 \\ 90.00 \\ 120.00 \\ 2273.33(6) \\ 3 \\ 1.589 \\ 1.658 \\ 1080 \\ 0.18 \times 0.17 \times 0.17 \\ colorless block \\ 2.44-27.99 \\ -20 < k < 20 \\ -13 < l < 13 \\ 51541 \\ 7199 (R_{int} = 0.0342) \\ full-matrix least squares on F^{2} \\ 7199/1/363 \\ 1.019 \\ R1 = 0.0139 \\ R1 = 0.0139 \\ R = 0.013$	$\begin{array}{c} 13b^{-1}/_{3}C_{6}H_{6} \\ \hline C_{38}H_{33}IN_{2}Pd \\ 750.96 \\ 100 \\ 0.71073 \\ monoclinic \\ P2(1) \\ \hline 10.0764(3) \\ 14.6621(4) \\ 33.0584(10) \\ 90.00 \\ 90.00 \\ 97.881(2) \\ 90.00 \\ 4838.0(2) \\ 6 \\ 1.547 \\ 1.561 \\ 2244 \\ 0.24 \times 0.21 \times 0.01 \\ colorless thin plate \\ 1.24-30.67 \\ -14 < h < 13 \\ -20 < k < 20 \\ -47 < l < 46 \\ 92517 \\ 29483 (R_{int} = 0.1219) \\ \hline 29483/1/1111 \\ 0.978 \\ R1 = 0.0669 \\ R1 = 0.0669 \\ R1 = 0.0669 \\ \hline \end{array}$
empirical formula fw temp (K) wavelength (Å) cryst syst space group unit cell dimens a (Å) b (Å) c (Å) c (Å) α (deg) β (deg) γ (deg) V (Å ³) Z density (calcd, g/cm ³) abs coeff (mm ⁻¹) F(000) cryst size (mm) cryst color and shape θ range data collctn limiting indices refins collected indep reflns refinement method data/restraint/ param GOF on F^2 final R indices $[I > 2\sigma(I)]^{a,b}$	$\begin{array}{c} 12\\ C_{38}H_{35}N_{2}IPd\\ 752.98\\ 100\\ 0.71073\\ monoclinic\\ C2/c\\ 27.4660(8)\\ 13.7460(4)\\ 19.5017(6)\\ 90.00\\ 121.316(1)\\ 90.00\\ 6290.2(3)\\ 8\\ 1.590\\ 1.601\\ 3008\\ 0.35 \times 0.25 \times 0.20\\ colorless block\\ 1.72-27.50\\ -34 < h < 35\\ -17 < k < 17\\ -25 < l < 25\\ 31842\\ 7193(R_{int} = 0.0174)\\ \\ \\ 7193/0/386\\ 1.090\\ R1 = 0.0165\\ wR2 = 0.0459\\ \end{array}$	13a $C_{36}H_{31}IN_2Pd$ 724.93 100 0.71073 trigonal $P3(1)$ 15.7499(2) 15.7499(2) 10.5822(2) 90.00 90.00 2273.33(6) 3 1.589 1.658 1080 0.18 × 0.17 × 0.17 colorless block 2.44-27.99 -20 < k < 20	$\begin{array}{c} 13b^{-1}/_{3}C_{6}H_{6} \\ \hline C_{38}H_{33}IN_{2}Pd \\ 750.96 \\ 100 \\ 0.71073 \\ monoclinic \\ P2(1) \\ \hline 10.0764(3) \\ 14.6621(4) \\ 33.0584(10) \\ 90.00 \\ 90.00 \\ 97.881(2) \\ 90.00 \\ 4838.0(2) \\ 6 \\ 1.547 \\ 1.561 \\ 2244 \\ 0.24 \times 0.21 \times 0.01 \\ colorless thin plate \\ 1.24-30.67 \\ -14 < h < 13 \\ -20 < k < 20 \\ -47 < l < 46 \\ 92517 \\ 29483(R_{int} = 0.1219) \\ \hline 29483/1/1111 \\ 0.978 \\ R1 = 0.0669 \\ wR2 = 0.1141 \\ \hline \end{array}$
empirical formula fw temp (K) wavelength (Å) cryst syst space group unit cell dimens a (Å) b (Å) c (Å) a (deg) β (deg) γ (deg) V (Å ³) Z density (calcd, g/cm ³) abs coeff (mm ⁻¹) F(000) cryst size (mm) cryst color and shape θ range data collctn limiting indices reflns collected indep reflns refinement method data/restraint/ param GOF on F^2 final R indices [$I > 2\sigma(I)$] ^{a,b}	$\begin{array}{c} 12\\ C_{38}H_{35}N_{2}IPd\\ 752.98\\ 100\\ 0.71073\\ monoclinic\\ C2/c\\ \hline\\ 27.4660(8)\\ 13.7460(4)\\ 19.5017(6)\\ 90.00\\ 121.316(1)\\ 90.00\\ 6290.2 (3)\\ 8\\ 1.590\\ 1.601\\ 3008\\ 0.35 \times 0.25 \times 0.20\\ colorless block\\ 1.72-27.50\\ -34 < h < 35\\ -17 < k < 17\\ -25 < l < 25\\ 31842\\ 7193 (R_{int} = 0.0174)\\ \hline\\ 7193/0/386\\ 1.090\\ R1 = 0.0165\\ wR2 = 0.0459\\ R1 = 0.0180\\ \hline\end{array}$	$\begin{array}{c} 13a \\ C_{36}H_{31}IN_2Pd \\ 724.93 \\ 100 \\ 0.71073 \\ trigonal \\ P3(1) \\ \hline 15.7499(2) \\ 15.7499(2) \\ 15.7499(2) \\ 10.5822(2) \\ 90.00 \\ 90.00 \\ 120.00 \\ 2273.33(6) \\ 3 \\ 1.589 \\ 1.658 \\ 1080 \\ 0.18 \times 0.17 \times 0.17 \\ colorless block \\ 2.44-27.99 \\ -20 < h < 20 \\ -20 < k < 20 \\ -13 < l < 13 \\ 51541 \\ 7199 (R_{int} = 0.0342) \\ full-matrix least squares on F^2 \\ 7199/1/363 \\ 1.019 \\ R1 = 0.0139 \\ wR2 = 0.0335 \\ R1 = 0.0143 \\ \end{array}$	$\begin{array}{c} 13b^{1/3}C_{6}H_{6} \\ \hline C_{38}H_{33}IN_{2}Pd \\ 750.96 \\ 100 \\ 0.71073 \\ monoclinic \\ P2(1) \\ \hline 10.0764(3) \\ 14.6621(4) \\ 33.0584(10) \\ 90.00 \\ 97.881(2) \\ 90.00 \\ 4838.0(2) \\ 6 \\ 1.547 \\ 1.561 \\ 2244 \\ 0.24 \times 0.21 \times 0.01 \\ colorless thin plate \\ 1.24-30.67 \\ -14 < h < 13 \\ -20 < k < 20 \\ -47 < l < 46 \\ 92517 \\ 29483 (R_{int} = 0.1219) \\ \hline 29483/1/111 \\ 0.978 \\ R1 = 0.0669 \\ wR2 = 0.1141 \\ R1 = 0.1324 \\ \hline \end{array}$

 ${}^{a}R(F) = \sum ||F_{o}| - |F_{c}|| / \sum |F_{o}|. {}^{b}R_{w}(F^{2}) = [\sum \{w(F_{o}^{2} - F_{c}^{2})^{2}\} / \sum \{w(F_{o}^{2})^{2}\}]^{0.5}; w^{-1} = \sigma^{2}(F_{o}^{2}) + (aP)^{2} + bP, \text{ where } P = [F_{o}^{2} + 2F_{c}^{2}] / 3 \text{ and } a \text{ and } b \text{ are constants adjusted by the program.}$

ing the directly attached phenyl ring and the Pd atom are twisted by $61.5-65.1^{\circ}$ from that of the coordination plane

containing the Pd, C1, I1, N1, and N2 atoms. These twist angles (Chart 2) are 11° or so greater than the largest

Figure 1. ORTEP representation of the molecular structure of $9 \cdot \text{CHCl}_3$ (left) and **10** (right). H atoms and the solvent molecule (CHCl₃) are omitted for clarity. Selected bond lengths (Å) and angles (deg) for **9**: Pd-N1, 2.025-(2); Pd-N2, 2.023(2); Pd-C1, 1.971(2); Pd-I1, 2.7024(3); N1-Pd-N2, 174.15(7); C1-Pd-I1, 173.56(7). Selected bond lengths (Å) and angles (deg) for **10**: Pd-N1, 2.051(1); Pd-N2, 2.055(12); Pd-C1, 2.010(2); Pd-I1, 2.7163(1); N1-Pd-N2, 177.89(4); C1-Pd-I1, 178.10(4).

Figure 2. ORTEP representation of the molecular structure of **11** (left) and **12** (right). H atoms are omitted for clarity. Selected bond lengths (Å) and angles (deg) for **11**: Pd–N1, 2.055(2); Pd–N2, 2.055(2); Pd–C1, 2.005(2); Pd–I1, 2.7089(2); N1–Pd–N2, 177.39(6); C1–Pd–I1, 179.24-(5). Selected bond lengths (Å) and angles (deg) for **12**: Pd–N1, 2.051(1); Pd–N2, 2.055(12); Pd–C1, 2.010(2); Pd–I1, 2.7163(1); N1–Pd–N2, 177.89(4); C1–Pd–I1, 178.10(4).

previously reported NCN pincer complexes⁷ but smaller than the twist angles in the analogous *m*-terphenyl-based PCP complexes (73.8 and 76.0°).¹⁵ Larger N1–Pd–N2 bond angles (174–178°) are realized for **9–12** compared to those of *m*-xylyl-based NCN pincer complexes (\sim 157–163°).^{11,13,19} The larger angles are presumably a result of the greater ring size for the seven-membered rings compared to the fivemembered rings. Correspondingly, the N–Pd–C bond angles in **9–12** are closer to the idealized value of 90° (\sim 86–89°), which might indicate less ring strain in these pincer complexes than for the *m*-xylyl diimine pincer complexes (\sim 78–79°).¹¹

Single crystals of compounds **13a** and **13b** were grown by slow vapor diffusion of hexane into a benzene solution. Their molecule structures are depicted in Figure 3. For the structure of **13b**, there are three independent molecules in the asymmetric unit of the unit cell, and only one of them is shown in Figure 3. Most of the metrical parameters are in

Figure 3. ORTEP representation of the molecular structure of **13a** (left) and **13b**· $^{1}/_{3}C_{6}H_{6}$ (right; only one of the three independent molecules in the asymmetric unit is shown). H atoms and solvent molecules are omitted for clarity. Selected bond lengths (Å) and angles (deg) for **13a**: Pd-N1, 2.029-(1); Pd-N2, 2.033(1); Pd-C1, 1.970(1); Pd-I1, 2.7157(1); N1-Pd-N2, 173.04(4); C1-Pd-I1, 171.61(4). Selected bond lengths (Å) and angles (deg) for **13b**: Pd-N1, 2.024(6); Pd-N2, 2.028(7); Pd-C1, 1.963(8); Pd-I1, 2.7059(8); N1-Pd-N2, 174.7(3); C1-Pd-I1, 175.5(2).

Figure 4. Further view of complex **13a** emphasizing the proximity of methine protons H19 and H20 with phenyl rings.

Figure 5. Illustration showing how hindered rotation about the N-Ar bond of complex 12 distinguishes methyl protons a and a' (other H atoms are omitted for clarity).

agreement with those determined for 9-12, with perhaps barely significant shorter Pd–I bond lengths as compared to the shortest Pd–I values found in 9. Interestingly, the twist angles for 13a and 13b differ by 2° despite having essentially the same substituents.

As desired, introduction of the chiral groups onto the *m*-terphenyl backbones of these two pincer complexes allows isolation of both diastereomers and thus provides additional evidence that such complexes are configurationally stable. Comparison of the structures of **13a** and **13b** shows how the different orientations of the terphenyl core influence the

^{(19) (}a) Stark, M. A.; Jones, G.; Richards, C. J. Organometallics 2000, 19, 1282. (b) van den Broeke, J.; Heeringa, J. J. H.; Chuchuryukin, A. V.; Kooijman, H.; Mills, A. M.; Spek, A. L.; van Lenthe, J. H.; Ruttink, P. J. A.; Deelman, B. J.; van Koten, G. Organometallics 2004, 23, 2287. (c) Mills, A. M.; van Beek, J. A. M.; van Koten, G.; Spek, A. L. Acta Crystallogr., Sect. C: Cryst. Struct. Commun. 2002, 58, m304.

Figure 6. Temperature-dependent ¹H NMR (600 MHz, CDCl₃) spectra of 12 (left) and simulated ¹H NMR spectra (right) for resonances a and a'.

Figure 7. Temperature-dependent ¹H NMR (600 MHz, CDCl₃) spectra of 11 (left) and simulated ¹H NMR spectra (right) for resonances a and a'.

Figure 8. Eyring plots of $\ln(k/T)$ vs 1/T for complexes 11 (\blacksquare) and 12 (\triangle).

orientation of the methylbenzyl groups attached to the N donor atoms. In compound **13a**, the two phenyl rings of the methylbenzyl groups are farther apart than those in **13b** on either side of the plane of the central benzene ring of the *m*-terphenyl backbone. Such orientations are probably dictated by the desire of the phenyl groups to orientate themselves away from the large I atom, which hampers rotation about the N1–C21 and N2–C29 bonds. These orientations have a significant impact on the ¹H NMR spectra for these materials (vide infra).

NMR Spectroscopic Studies. The ¹H NMR spectra of compounds **9–12** and **13b** show that the chemical shifts of the methine proton (CH=NR) range from δ 8.1 to 8.4 ppm, slightly downfield (ca. 0.2 ppm) from their corresponding ligand precursors. A rather large upfield shift of the methine proton is observed for **13a**, however, which appears at δ 7.60 ppm. Careful analysis of the structures of **13a** and **13b** provides a reasonable explanation. Specifically, the structure of **13a** reveals close contacts for the phenyl ring of the methylphenyl group with the methine protons H19/H20 (Figure 4). The structure of **13b**, by contrast, shows no comparable short contacts.

These results suggest that the structures determined by X-ray diffraction in the solid state are rigorously maintained in solution. The degree of rigidity is also signified by the observation of 11 distinguishable sets of resonances for the 11 protons in the cyclohexyl groups in the ¹H NMR spectrum of complex **10**. Apparently, rotation about the =N-Cy bonds does not occur on the NMR time scale at room temperature. This effect was more readily examined in detail with compounds **11** and **12**.

The room-temperature spectra of complexes 11 and 12 show broadened resonances attributable to the N-Ar resonances. A series of variable-temperature NMR experiments for complex 12 were thus conducted to examine this

phenomenon in greater detail (Figure 6, left). At low temperature (e.g., -25 °C), three sharp resonances are discerned for three mesityl methyl groups. As the temperature is raised, two of the three signals (**a** and **a**') begin to broaden and approach coalescence at 55 °C. Similar behavior is observed for compound **11** (Figure 7, left). These NMR spectra were simulated by using line-shape analysis software *WINDNMR-Pro*²⁰ (Figure 6, right; Figure 7, right). An Eyring plot and the resulting activation parameters are presented in Figure 8.

The data are consistent with hindered rotation about the N–Ar bond of **11** and **12** (Figure 5), caused by the fact that the *m*-terphenyl framework places the N–Ar methyl groups in close proximity to the halogen atom. Hindered P–C bond rotation was also discovered in the related pincer complex $[2,6-(2-'Bu_2PCH_2C_6H_4)_2C_6H_3PdBr]$,¹⁵ of which the rotation barrier is 10.0 kcal/mol. Relatively larger values are found for complexes **11** and **12**, which are 15.2 and 15.7 kcal/mol, respectively. These studies suggest that the present diimine pincer complexes are somewhat more sterically demanding than analogous pincer complexes having *m*-xylyl backbones.

Conclusion

In summary, new diimine NCN pincer ligands based upon the *m*-terphenyl scaffold have been synthesized, and their palladium complexes have been prepared by an oxidative addition route. Structural analyses of 9-13 reveal similar structures and high twist angles. Variable-temperature NMR spectroscopic studies of **11** and **12** indicated hindered rotation about the N-Ar bond. Introduction of chiral imine groups allowed resolution and complete structural characterization of chiral pincer complexes **13a** and **13b** having a high degree of nonfluxionality. This work firmly establishes that *m*terphenyls can be employed to construct rigid C_2 -symmetric pincer complexes. Efforts are underway to develop related pincers having other donor groups so that a better understanding of the relationship between donor groups and the twist angles can be gained.

Experimental Section

General Procedures and Materials. Experiments involving reactions of $Pd_2(dba)_3$ and ligands were carried out in a glovebox under nitrogen in anhydrous benzene. Certified ACS-grade solvents [tetrahydrofuran (THF), CCl₄, CHCl₃, CH₂Cl₂, benzene, hexanes, *n*-pentane, methanol (MeOH), and ethanol (EtOH)] and anhydrous benzene from Fisher were used as received. Aniline, 2,6-dimethylaniline, and 2,4,6-trimethylaniline were distilled prior to use. The NMR spectroscopy measurements were recorded on a Varian Inova 400 or 600 MHz spectrometer. Chemical shifts were referenced to residual solvent signals (¹H and ¹³C NMR). Elemental analyses were performed by Quantitative Technologies, Inc., Whitehouse, NJ. 2,6-(2-CH₃C₆H₄)₂C₆H₃I (**1b**) and 2,6-(2-CH(O)C₆H₄)₂C₆H₃Br (**3a**) were synthesized according to literature methods.^{15,18}

2,6-(2-CHBr₂C₆H₄)₂C₆H₃I (2b). To a solution of **1b** (3.00 g, 7.81 mmol) in 200 mL of CCl₄ in a 500 mL round-bottomed flask were added *N*-bromosuccinimide (2.79 g, 15.7 mmol) and benzoyl

peroxide (50 mg, 0.20 mmol). The solution was heated to reflux under nitrogen for 6 h, and another portion of N-bromosuccinimide (3.14 g, 17.6 mmol) and benzoyl peroxide (50 mg, 0.20 mmol) was added. After an additional 18 h of reflux, the mixture was cooled and filtered. The filtrate was then washed with 5% Na₂SO₃ $(100 \text{ mL} \times 3)$ and dried with anhydrous MgSO₄. After filtration, the solvent was evaporated and the remaining solid was washed with *n*-pentane and then dried in vacuo to yield 4.98 g (91.2%) of **2b** as a white solid. (Chemical shifts of two isomers are reported for all ligand precursors without specific assignment to syn- or anti-.) ¹H NMR (CDCl₃, 400 MHz): δ 6.35 (s, CHBr₂), 6.41 (s, CHBr₂), 7.09-7.17 (m, 2H), 7.33-7.35 (m, 2H), 7.38-7.44 (m, 2H), 7.53–7.58 (m, 3H), 8.08–8.10 (m, 2H). ¹³C {¹H} NMR (CDCl₃, 100 MHz): δ 38.9 (CHBr₂), 39.0 (CHBr₂), 104.9 (Ar(C)-I), 105.8 (Ar(C)-I), 128.4, 128.5, 129.2, 129.4, 129.5, 129.7, 129.76, 129.79, 130.1, 139.3, 139.4, 140.5, 140.7, 145.3, 145.4. Anal. Calcd for C₂₀H₁₃Br₄I: C, 34.32; H, 1.87. Found: C, 34.15; H, 1.52.

2,6-(2-CH(O)C₆H₄)₂C₆H₃I (3b). A mixture of 2b (4.00 g, 5.72 mmol), silver nitrate (4.00 g, 23.5 mmol), and sodium acetate (2.11 g, 25.7 mmol) in a 250 mL round-bottomed flask containing a solvent mixture of 125 mL of EtOH and 25 mL of THF was heated to reflux under nitrogen for 16 h. After removal of solids by filtration, the solvent was evaporated to yield a sticky compound. This sticky compound was dissolved in CH₂Cl₂ (150 mL), and 5 mL of hydrochloric acid (10%) was added. The reaction mixture was stirred at room temperature for 6 h, then washed with water (100 mL \times 3), and dried with anhydrous MgSO₄. The solvent was evaporated, and the crude product was washed with diethyl ether and then dried in vacuo to yield 1.98 g (84.0%) of 3b. ¹H NMR (CDCl₃, 400 MHz): δ 9.88 (CHO), 9.87 (CHO), 8.02-8.04 (m, 2H), 7.66–7.70 (m, 2H), 7.55–7.59 (m, 2H), 7.50–7.54 (m, 1H), 7.31-7.36 (m, 4H). ¹³C {¹H} NMR (CDCl₃, 100 MHz): δ 191.3 (CHO), 191.6 (CHO), 106.0 (Ar(C)-I), 127.9, 128.07, 128.15, 128.4, 128.99, 129.03, 129.9, 130.0, 130.9, 131.1, 133.6, 133.7, 133.9, 134.1, 144.58, 144.61, 148.0, 148.3. Anal. Calcd for C₂₀H₁₃O₂I: C, 58.27; H, 3.18. Found: C, 58.09; H, 2.88.

2,6-{2-PhN=C(H)C₆H₄}₂C₆H₃Br (4a). To a benzene (40 mL) solution of **3a** (1.00 g, 2.74 mmol) and aniline (0.60 g, 6.4 mmol) in a 100 mL round-bottomed flask were added several pieces of crystalline *p*-toluenesulfonic acid. The resultant mixture was heated to reflux under nitrogen for 16 h. Water generated by this reaction was collected by a Dean–Stark receiver. After being cooled to room temperature, the solvent was removed under vacuum. The resultant material was recrystallized from a MeOH/CH₂Cl₂ solvent mixture to yield 1.13 g (80%) of a pale-yellow crystalline solid of **4a**. ¹H NMR (CDCl₃, 400 MHz): δ 8.22 (CH=NPh), 8.25 (CH=NPh), 6.94 (m), 7.06–7.10 (m), 7.21–7.38 (m), 7.45 (t, *J*_{HH} = 7 Hz), 7.53–7.58 (m, 4H), 8.35–8.37 (m, 2H). Anal. Calcd for C₃₂H₂₃N₂-Br: C, 74.57; H, 4.50; N, 5.43. Found: C, 74.01; H, 4.29; N, 5.31.

2,6-{2-PhN=C(H)C₆H₄}₂C₆H₃I (4b). A procedure similar to that above was used for preparing NCN ligand precursor **4a**. Starting materials of **3b** (0.50 g, 1.2 mmol) and aniline (0.30 g, 3.2 mmol) were used, and 0.53 g of pale-yellow crystalline **4b** (78%) was obtained. (Chemical shifts of two isomers are reported without specific assignment to syn or anti.) ¹H NMR (CDCl₃, 400 MHz): δ 8.21 (CH=NPh), 8.22 (CH=NPh), 6.94–6.96 (m), 7.06–7.11 (m), 7.19–7.38 (m), 7.47 (t, *J*_{HH} = 7 Hz, 1H), 7.49–7.57 (m, 4H), 8.35–8.38 (m, 2H). ¹³C {¹H} NMR (CDCl₃, 100 MHz): δ 158.0 (CH=NPh), 159.0 (CH=NPh), 106.2 (Ar(*C*)–I), 106.5 (Ar(*C*)–I), 120.9, 121.1, 126.1, 126.2, 127.0, 127.1, 127.9, 128.1, 128.8,

⁽²⁰⁾ Reich, H. J. WINDNMR, version 7.1.11; University of Wisconsin-Madison: Madison, WI, 2005.

129.4, 129.9, 130.2, 130.4, 130.7, 130.9, 131.1, 133.8, 145.7, 145.8, 146.8, 146.9, 152.0, 152.7. Anal. Calcd for $C_{32}H_{23}N_2I$: C, 68.34; H, 4.12; N, 4.98. Found: C, 68.30; H, 3.75; N, 4.83.

 $2,6-{2-CyN=C(H)C_6H_4}_2C_6H_3I$ (5b; Cy = cyclohexyl). To a benzene (40 mL) solution of 3b (2.00 g, 4.85 mmol) and cyclohexylamine (1.01 g, 10.2 mmol) in a 100 mL round-bottomed flask were added several pieces of crystalline p-toluenesulfonic acid. The resultant mixture was heated to reflux under nitrogen for 16 h. Water generated by this reaction was collected by a Dean-Stark receiver. After being cooled to room temperature, the solvent was removed under vacuum. The resultant material (2.72 g, 97%) was of good quality, as indicated by ¹H NMR spectroscopy, and was used as received. ¹H NMR (CDCl₃, 400 MHz): δ 1.21–1.36 (m, 6H), 1.51–1.70 (m, 10H), 1.79 (br, 4H), 2.94–3.04 (m, 2H), 7.19– 7.22 (m, 2H), 7.25-7.27 (m, 2H), 7.43-7.48 (m, 5H), 8.03 (s, 1H, ArCH=N), 8.05 (s, 1H, ArCH=N), 8.10-8.14 (m, 2H). ¹³C NMR (CDCl₃, 100 MHz): δ 24.8, 24.9, 25.0, 25.9, 34.5, 34.6, 70.1, 70.3, 106.38 (Ar(C)-I), 106.43 (Ar(C)-I), 126.8, 126.9, 127.7, 127.8, 129.6, 129.8, 129.9, 130.0, 130.1, 134.2, 134.4, 145.75, 145.80, 145.82, 146.0, 156.7 (CH=N), 157.0 (CH=N). Anal. Calcd for C₃₂H₃₅N₂I: C, 66.90; H, 6.14; N, 4.88. Found: C, 66.48; H, 6.25; N, 4.82.

2,6-{2-XyIN=C(H)C₆H₄}₂C₆H₃I [6b; Xyl = 2,6-(CH₃)₂C₆H₃]. A procedure similar to that above was used for preparing NCN ligand precursor **5b**. Starting materials of **3b** (1.00 g, 2.40 mmol) and 2,6-dimethylaniline (0.88 g, 7.3 mmol) were used, and 1.35 g of pale-yellow crystalline **5b** (90%) was obtained. ¹H NMR (CDCl₃, 400 MHz): δ 7.96 (*CH*=NXyl), 8.00 (*CH*=NXyl), 1.95 (*CH*₃-), 2.13 (*CH*₃-), 6.88-7.07 (m, 6H), 7.22-7.30 (m, 4H), 7.38-7.41 (m, 1H), 7.55-7.58 (m, 4H), 8.40-8.42 (m, 2H). ¹³C {¹H} NMR (CDCl₃, 100 MHz): δ 160.5 (*CH*=NXyl), 161.0 (*CH*=NXyl), 18.6 (*CH*₃-), 18.8 (*CH*₃-), 106.4 (Ar(*C*)-1), 123.9, 126.7, 126.9, 127.1, 127.6, 127.5, 127.7, 128.3, 128.4, 128.8, 129.6, 129.8, 130.4, 131.0, 130.9, 131.1, 133.8, 133.9, 145.7, 145.8, 146.6, 146.8, 159.9, 151.4. Anal. Calcd for C₃₆H₃₁N₂I: C, 69.90; H, 5.05; N, 4.53. Found: C, 69.60; H, 4.80; N, 4.42.

2,6-{2-MesN=C(H)C₆H₄}₂C₆H₃I [7b; Mes = 2,4,6-(CH₃)₃C₆H₂]. A procedure similar to that above was used for preparing NCN ligand precursor **6b**. Starting materials of **3b** (1.00 g, 2.40 mmol) and 2,4,6-trimethylaniline (0.86 g, 6.4 mmol) were used, and 1.44 g of pale-yellow crystalline **6b** (92%) was obtained. ¹H NMR (CDCl₃, 400 MHz): δ 7.95 (*H*=NMes), 7.97 (*H*=NMes), 1.92 (CH₃-), 2.08 (CH₃-), 2.27 (CH₃-), 6.70 (s), 6.87 (s), 7.20-7.27 (m, 4H), 7.34-7.38 (m, 1H), 7.52-7.56 (m, 4H), 8.37-8.40 (m, 2H). ¹³C {¹H} NMR (CDCl₃, 100 MHz): δ 160.5 (CH=NMes), 161.1 (CH=NMes), 18.6, 18.8, 20.9, 21.1, 106.4 (Ar(*C*)-I), 126.6, 126.7, 127.2, 127.4, 127.7, 128.7, 128.9, 129.0, 129.6, 129.8, 130.4, 130.7, 130.9, 133.0, 133.6, 133.9, 134.0, 145.7, 145.8, 146.5, 146.7, 148.4, 149.0. Anal. Calcd for C₃₈H₃₅N₂I: C, 70.59; H, 5.46; N, 4.33. Found: C, 70.37; H, 5.23; N, 4.18.

[2,6-{2-(S)-PhCH(CH₃)N=C(H)C₆H₄}₂C₆H₃I] (8). To a benzene (40 mL) solution of **3b** (1.00 g, 2.43 mmol) and (*S*)-αmethylbenzylamine (0.62 g, 5.1 mmol) in a 100 mL round-bottomed flask were added several pieces of crystalline *p*-toluenesulfonic acid. The resultant mixture was heated to reflux under nitrogen for 16 h. Water generated by this reaction was collected by a Dean–Stark receiver. After being cooled to room temperature, the solvent was removed under vacuum. The resultant material (1.50 g, 99%) was pure according to NMR spectroscopy and elemental analysis and was used as received without further purification. ¹H NMR (CDCl₃, 400 MHz): δ 1.33 (d, *J*_{HH} = 6.4 Hz, −CH₃), 1.52 (dd, *J*_{HH} = 6.4 and 1.0 Hz, −CH₃), 4.19 (quartet, *J*_{HH} = 6.4 Hz, −CH−), 4.37 (sextet, *J*_{HH} = 6.4 Hz, −CH−), 7.16−7.42 (m, 14H), 7.43−7.50 (m, 5H), 8.11–8.25 (m, 4H). 13 C NMR (CDCl₃, 100 MHz): δ 24.8, 25.1, 25.2, 69.7, 70.0, 70.2, 70.5, 106.5 (Ar(C)–I), 126.7, 126.8, 126.9, 127.0, 127.08, 127.13, 127.4, 127.7, 127.8, 128.0, 128.6, 128.7, 129.5, 129.6, 129.8, 129.9, 130.1, 130.16, 130.22, 130.4, 133.8, 133.9, 134.1, 134.2, 145.0, 145.4, 145.8, 146.0, 146.1, 157.6, 157.7, 157.9, 158.1. Anal. Calcd for C₃₆H₃₁N₂I: C, 69.89; H, 5.05; N, 4.53. Found: C, 69.76; H, 4.97; N, 4.22.

[2,6-{2-PhN=C(H)C₆H₄}₂C₆H₃PdI] (9). A mixture of 4b (0.10 g, 0.18 mmol) and Pd₂(dba)₃ (0.10 g, 0.11 mmol) was dissolved in 15 mL of anhydrous benzene in a 20 mL vial and stirred under nitrogen for 16 h. The precipitate that formed was filtered and washed with 5 mL of benzene. The solids were extracted with 30 mL of CHCl₃. Upon removal of CHCl₃, 0.069 g of pale-yellow crystalline 9 was obtained (45%). ¹H NMR (CDCl₃, 400 MHz): δ 8.44 (s, 2H, CH=NPh), 7.13–7.16 (m, 6H), 7.19–7.23 (m, 1H), 7.27–7.29 (m, 2H), 7.33–7.26 (m, 4H), 7.56–7.60 (m, 4H), 7.71–7.72 (m, 4H). ¹³C {¹H} NMR (CDCl₃, 100 MHz): δ 165.5 (CH= NPh), 150.8 (Ar(C)−Pd), 123.2, 125.6, 127.6, 128.5, 128.7, 128.8, 130.2, 131.1, 131.4, 132.7, 141.1, 141.8, 150.2. Anal. Calcd for C₃₂H₂₃N₂IPd•CHCl₃: C, 50.28; H, 3.07; N, 3.55. Found: C, 50.24; H, 2.58; N, 3.40.

[2,6-{2-CyN=C(H)C₆H₄}2C₆H₃PdI] (10). A mixture of 5b (0.31 g, 0.54 mmol) and Pd₂(dba)₃ (0.30 g, 0.33 mmol) was dissolved in 15 mL of anhydrous benzene in a 20 mL vial and stirred under nitrogen for 16 h. The precipitate that formed was filtered and washed with 5 mL of benzene. The solids were extracted with 20 mL of CH₂Cl₂. Upon removal of CH₂Cl₂, 0.21 g of pale-yellow crystalline 10 was obtained (59%). ¹H NMR (CDCl₃, 400 MHz): δ 0.80–0.95 (m, 4H), 1.07–1.30 (m, 6H), 1.42–1.50 (m, 4H), 1.61–1.65 (m, 2H), 1.84 (d, J_{HH} = 11.6 Hz, 2H), 3.29 (d, J_{HH} = 12.8 Hz, 2H), 3.91–3.97 (m, 2H), 7.14–7.15 (m, 3H), 7.39–7.41 (m, 2H), 7.45–7.49 (m, 4H), 7.52–7.56 (m, 2H), 8.16 (d, J_{HH} = 1.6 Hz, 2H, CH=N). ¹³C {¹H} NMR (CDCl₃, 100 MHz): δ 24.9, 25.3, 25.6, 32.1, 36.2, 69.7 (Cy(*C*)–N), 125.0, 127.1, 127.8, 129.6, 131.3, 133.0, 141.1, 141.7, 151.3 (Ar(*C*)–I), 162.4 (*C*H=N).

[2,6-{2-XylN=C(H)C₆H₄}₂C₆H₃PdI] (11). A mixture of 6b (0.20 g, 0.32 mmol) and Pd₂(dba)₃ (0.18 g, 0.19 mmol) was dissolved in 15 mL of anhydrous benzene in a 20 mL vial and stirred at room temperature under nitrogen for 16 h. Using the same procedure as that used to isolate 9, 0.15 g of pale-yellow crystalline product 11 was obtained (65%). ¹H NMR (CDCl₃, 600 MHz): δ 8.13 (s, 2H, CH=NPh), 2.05 (br, 6H, CH₃), 2.46 (br, 6H, CH₃), 6.82 (br, 2H), 6.95 (t, J_{HH} = 8 Hz, 2H), 7.00 (br, 2H), 7.24–7.26 (m, 3H), 7.44 (d, J_{HH} = 8 Hz, 2H), 7.54–7.56 (m, 2H), 7.65 (d, J_{HH} = 8 Hz, 2H), 7.68–7.7 (m, 2H). ¹³C {¹H} NMR (CDCl₃, 150 MHz): δ 172.1 (s, CH=NXly), 149.4 (Ar(C)-Pd), 21.6 (br, CH₃), 22.0 (br, CH₃), 125.3, 127.1, 127.2, 128.2 (br), 128.7, 128.8, 130.2, 131.1, 131.4, 132.7, 141.1, 141.8, 150.2. Anal. Calcd for C₃₆H₃₁N₂-IPd: C, 59.64; H, 4.31; N, 3.86. Found: C, 59.40; H, 4.00; N, 3.58.

[2,6-{2-MesN=C(H)C₆H₄}₂C₆H₃PdI] (12). A mixture of 7b (0.20 g, 0.31 mmol) and Pd₂(dba)₃ (0.17 g, 0.18 mmol) was dissolved in 15 mL of anhydrous benzene in a 20 mL vial and stirred at room temperature under nitrogen for 16 h. Using the same workup procedure as that used for 9, 0.16 g of yellow crystalline product 12 was obtained (69%). ¹H NMR (CDCl₃, 600 MHz): δ 8.10 (s, 2H, CH=NPh), 2.01 (br, 6H, CH₃), 2.15 (s, 6H, CH₃), 2.41 (br, 6H, CH₃), 6.62 (br, 2H), 6.81 (br, 2H), 7.23-7.26 (m, 3H), 7.42 (d, J_{HH} = 8 Hz, 2H), 7.52-7.55 (m, 2H), 7.63 (d, J_{HH} = 7 Hz, 2H), 7.67 (t, J_{HH} = 7 Hz, 2H). ¹³C {¹H} NMR (CDCl₃, 150 MHz): δ 171.7 (s, CH=NMes), 149.60 (Ar(C)-Pd), 20.8 (s, CH₃), 21.5 (br, CH₃), 21.8 (br, CH₃), 125.2, 127.1, 128.9 (br), 129.8, 130.1 (br), 130.4, 130.7 (br), 131.0 (br), 131.1, 131.6, 133.2, 136.5, 141.2,

143.3, 149.63. Anal. Calcd for $C_{38}H_{35}N_2$ IPd: C, 60.61; H, 4.68; N, 3.72. Found: C, 60.26; H, 4.41; N, 3.62.

[2,6-{2-(S)-PhCH(CH₃)N=C(H)C₆H₄}₂C₆H₃PdI] (13). A mixture of 8 (0.30 g, 0.49 mmol) and Pd₂(dba)₃ (0.23 g, 0.25 mmol) was dissolved in 15 mL of anhydrous benzene in a 20 mL vial and stirred under nitrogen for 16 h. The reaction mixture was filtered, and the solvent was removed in vacuo. The resulting material was purified by flash column chromatography using silica gel and 20% (v/v) of ethyl acetate in hexanes as the eluent. The two diastereomers were thus separated. The first component that eluted was assigned as 13a, and the second one was assigned as 13b. The absolute configurations were determined by X-ray crystallography.

13a. ¹H NMR (CDCl₃, 400 MHz): δ 1.38 (d, $J_{\text{HH}} = 6.8$ Hz, 6H, $-\text{CH}_3$), 5.60–5.65 (m, 2H, -CH-), 7.14–7.17 (m, 6H), 7.21 (s, 3H), 7.27–7.33 (m, 6H), 7.37–7.41 (m, 2H), 7.50–7.56 (m, 4H), 7.60 (d, $J_{\text{HH}} = 2.0$ Hz, 2H, -CH=N-). ¹³C NMR (CDCl₃, 100 MHz): δ 22.8 ($-\text{CH}_3$), 70.0 (-CH-), 125.2, 127.1, 128.4, 128.6, 129.1, 129.2, 130.0, 130.7, 131.5, 132.6, 139.3, 141.0, 141.8, 150.7 (Ar(*C*)–Pd), 165.0 (-CH=N-). Anal. Calcd for C₃₆H₃₁N₂-IPd: C, 59.64; H, 4.31; N, 3.86. Found: C, 59.57; H, 4.19; N, 3.66.

13b. ¹H NMR (CDCl₃, 400 MHz): δ 1.50 (d, $J_{\text{HH}} = 6.8$ Hz, 6H, $-CH_3$), 5.69 (q, $J_{\text{HH}} = 6.8$ Hz, 2H, -CH-), 6.60 (d, $J_{\text{HH}} =$ 7.6 Hz, 4H), 6.65 (d, $J_{\text{HH}} =$ 7.6 Hz, 2H), 6.90 (d, $J_{\text{HH}} =$ 7.2 Hz, 2H), 6.99–7.03 (m, 5H), 7.17 (t, $J_{\text{HH}} =$ 7.6 Hz, 2H), 7.28–7.32 (m, 2H), 7.34–7.40 (m, 4H), 8.25 (s, 2H, -CH=N-). ¹³C NMR (CDCl₃, 100 MHz): δ 23.1 ($-CH_3$), 70.3 (-CH-), 124.8, 126.7, 127.2, 128.1, 128.5, 129.9, 130.5, 131.7, 132.1, 140.2, 141.38, 141.43, 150.1 (Ar(*C*)–Pd), 164.9 (-CH=N-). Anal. Calcd for C₃₆H₃₁N₂IPd: C, 59.64; H, 4.31; N, 3.86. Found: C, 59.80; H, 4.21; N, 3.39.

Experimental Procedure for X-ray Crystallography. X-rayquality crystals were grown by slow vapor diffusion of hexane into chloroform solutions of **9–12**. Crystals of **13a** and **13b** were grown by slow vapor diffusion of hexane into benzene solutions. **9-CHCl**₃.

The X-ray intensity data for **9** were measured at 100 K on a Bruker SMART Apex CCD-based X-ray diffractometer system equipped with a Mo-target X-ray tube ($\lambda = 0.71073$ Å) operated at 2000 W power (at Youngstown State University). The crystal was mounted on a glass fiber (pulled from a capillary tube) using mineral oil, which was then frozen. The detector was placed at a

distance of 5.02 cm from the crystal. Data were measured using ω scans of 0.3° per frame for 10 s such that a hemisphere was collected. The frames were integrated with the Bruker SAINT software package using a narrow-frame integration algorithm, which also corrects for the Lorentz and polarization effects. Absorption corrections were applied using *SADABS*. The structure was solved and refined using the Bruker *SHELXTL* (version 5.1) software. The positions of all of the non-H atoms were derived from the direct methods (TREF) solution. With all of the non-H atoms being anisotropic, the structure was refined to convergence by a least-squares method on F^2 , *SHELXL-93*, incorporated in *SHELXTL.PC* V 5.03.

Compounds 10-13. The X-ray intensity data were measured at 100 K on a Bruker SMART Apex II CCD-based X-ray diffractometer system equipped with a Mo-target X-ray tube ($\lambda =$ 0.71073 Å) operated at 1500 W power (at Case Western Reserve University). The crystals were mounted on a MiTeGen micromount using paratone-N, which was then frozen. The detector was placed at a distance of 6.00 cm from the crystal. Data were measured using ω scans of 0.5° per frame for 10 s. The frames were integrated with the Bruker SAINT build in the APEX II software package using a narrow-frame integration algorithm, which also corrects for the Lorentz and polarization effects. Absorption corrections were applied using AXScale. The structure was solved and refined using the Bruker SHELXTL (version 6.14) software. The positions of all of the non-H atoms were derived from the direct methods (TREF) solution. With all of the non-H atoms being anisotropic and all of the H atoms being isotropic, the structure was refined to convergence by a least-squares method on F^2 , XSHELL (version 6.3.1), incorporated in SHELXTL (version 6.14).

Acknowledgment. The authors acknowledge support from the ACS-PRF (PRF 44644-AC3) and from the National Science Foundation (Grant CHE 0541766) for funds to purchase the X-ray diffractometer.

Supporting Information Available: Crystallographic information files (CIF) for complexes **9–13** and ¹H and ¹³C NMR spectra. This material is available free of charge via the Internet at http://pubs.acs.org.

IC062476A